首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After habitat restoration, species need to recolonize from existing populations. The ability of species to recolonize restored habitats likely depends on their traits. This study aimed to test if species traits and isolation from source habitat can explain the presence of insects in restored grasslands. We surveyed the occurrence of hoverflies and bees in 14 restored seminatural pastures as well as in intact seminatural grasslands in the surrounding landscape. We tested how connectivity, time since restoration, and species traits influence if species that are present in the surrounding landscape also occur in restored pastures. Solitary bee species present in the landscape were less likely to occur in restored pastures compared to bumblebees and hoverflies. The occurrence of bumblebees, but not solitary bees or hoverflies, decreased with time since restoration. The occurrence of solitary bees increased but the occurrence of hoverflies decreased with high connectivity. Migratory hoverflies were more likely to occur in restored pastures than nonmigratory hoverflies, especially in pastures with low connectivity. Among both bumblebees and solitary bees, the occurrence was influenced by nesting traits, with the lowest occurrence of parasitic species and of species digging nests in the ground. The subset of the landscape's species pool that occurs in restored pastures has a contrasting set of traits compared with species in intact source habitats. Both mobility and resource use act as filters that influence the assembly of pollinator communities after restoration. A full recovery of pollinator communities is more likely if source populations are available nearby.  相似文献   

2.
Increasing attention has been paid to the relationship between biodiversity and ecosystem functioning (BEF) because of the rapid increase in species loss. However, over the past 20 years, most BEF studies only focused on the effect of species diversity on one or a few ecosystem functions, and only a few studies focused on ecosystem multifunctionality (i.e., the simultaneous provision of several ecosystem functions). Grassland ecosystems have important economic, environmental, and esthetic value; thus, this study focused on the heterogeneous microcommunities in grasslands under three management modes. The multifunctionality index (M‐index) was assessed at community and microcommunity scales, and the relationship between species diversity and multifunctionality was investigated. The communities were found to be respectively composed of one, three, and six microcommunities in grazing, clipping, and enclosure management, based on a two‐way indicator species analysis (TWINSPAN) and detrended correspondence analysis (DCA) for community structure. Biodiversity and soil indicators showed an apparent degradation of the grazing community, which had the worst M‐index. Clipping and enclosure communities showed no significant difference in biodiversity indices, soil variables, and M‐index; however, these indices were clearly different among microcommunities. Therefore, the microcommunity scale may be suitable to investigate the relationship between vegetation and multifunctionality in seminatural grassland ecosystems. Dominant species richness had more explanatory power for ecosystem multifunctionality than subdominant species richness, rare species richness, and the number of all species. Therefore, it is important to distinguish the role and rank of different species in the species richness–multifunctionality model; otherwise, the model might include redundant and unclear information. Communities with more codominant species whose distribution is also even might have better multifunctionality.  相似文献   

3.
Aims Grasslands are the world's most extensive terrestrial ecosystem, and are a major feed source for livestock. Meeting increasing demand for meat and other dairy products in a sustainable manner is a big challenge. At a field scale, Global Positioning System and ground-based sensor technologies provide promising tools for grassland and herd management with high precision. With the growth in availability of spaceborne remote sensing data, it is therefore important to revisit the relevant methods and applications that can exploit this imagery. In this article, we have reviewed the (i) current status of grassland monitoring/observation methods and applications based on satellite remote sensing data, (ii) the technological and methodological developments to retrieve different grassland biophysical parameters and management characteristics (i.e. degradation, grazing intensity) and (iii) identified the key remaining challenges and some new upcoming trends for future development.Important findings The retrieval of grassland biophysical parameters have evolved in recent years from classical regression analysis to more complex, efficient and robust modeling approaches, driven by satellite data, and are likely to continue to be the most robust method for deriving grassland information, however these require more high quality calibration and validation data. We found that the hypertemporal satellite data are widely used for time series generation, and particularly to overcome cloud contamination issues, but the current low spatial resolution of these instruments precludes their use for field-scale application in many countries. This trend may change with the current rise in launch of satellite constellations, such as RapidEye, Sentinel-2 and even the microsatellites such as those operated by Skybox Imaging. Microwave imagery has not been widely used for grassland applications, and a better understanding of the backscatter behaviour from different phenological stages is needed for more reliable products in cloudy regions. The development of hyperspectral satellite instrumentation and analytical methods will help for more detailed discrimination of habitat types, and the development of tools for greater end-user operation.  相似文献   

4.
Land‐use intensification is a major driver of local species extinction and homogenization. Temperate grasslands, managed at low intensities over centuries harbored a high species diversity, which is increasingly threatened by the management intensification over the last decades. This includes key taxa like ants. However, the underlying mechanisms leading to a decrease in ant abundance and species richness as well as changes in functional community composition are not well understood. We sampled ants on 110 grassland plots in three regions in Germany. The sampled grasslands are used as meadows or pastures, being mown, grazed or fertilized at different intensities. We analyzed the effect of the different aspects of land use on ant species richness, functional trait spaces, and community composition by using a multimodel inference approach and structural equation models. Overall, we found 31 ant species belonging to 8 genera, mostly open habitat specialists. Ant species richness, functional trait space of communities, and abundance of nests decreased with increasing land‐use intensity. The land‐use practice most harmful to ants was mowing, followed by heavy grazing by cattle. Fertilization did not strongly affect ant species richness. Grazing by sheep increased the ant species richness. The effect of mowing differed between species and was strongly negative for Formica species while Myrmica and common Lasius species were less affected. Rare species occurred mainly in plots managed at low intensity. Our results show that mowing less often or later in the season would retain a higher ant species richness—similarly to most other grassland taxa. The transformation from (sheep) pastures to intensively managed meadows and especially mowing directly affects ants via the destruction of nests and indirectly via loss of grassland heterogeneity (reduced plant species richness) and increased soil moisture by shading of fast‐growing plant species.  相似文献   

5.
Floral resources on crop field margins are a well-accepted measure to increase bee abundance in agricultural landscapes. However, studies have mainly focused on managed margins, while studies on the effect of unmanaged floral margins for the conservation of bees are still scarce. This work aims to test and compare the effects of three types of floral margins (managed herbaceous, managed shrubby, and unmanaged herbaceous) on the abundance and diversity of bees in order to propose a management strategy for the conservation of pollinating insects. Bee abundance was recorded by visual samplings in plots of 2 × 2 square meters over two years in the three margin types in four localities in southern Spain. The diversity of plant species and the flowers they supported were measured to explain the associated bee communities. Differences in the relative abundances of bee families and the number and abundance of bee genera were observed between margin types. Andrenidae was generally more abundant in the herbaceous margins regardless of whether these were managed or not. With the exception of the Halictidae, the majority of bees families (wild Apidae, Apis mellifera, Colletidae and Megachilidae) were more abundant in the managed than unmanaged margins. Moreover, the number of bee genera was higher in managed than in unmanaged margins. In addition, here we show that managed margins supported at least 30% more rare bee genera than unmanaged margins, highlighting the importance of floral margins management for the enhancement and conservation of bee communities, restoring habitat and food resources for pollinators across the Mediterranean agricultural landscape.  相似文献   

6.
ABSTRACT

The reasons for the decline of bee diversity and abundance include the destruction and loss of natural habitats. Protected areas are created for biodiversity conservation, but these areas vary strongly in their level of vegetation disturbance. Using trap-nests, we assessed changes in solitary bee abundance, richness, and composition in areas ranging from naturally conserved to degraded. Solitary bees were sampled during an 18-month period in three areas of southeastern Brazil: a preserved area in Rio Preto State Park – PERP; a restored/altered area with exotic plants at the Federal University of the Jequitinhonha and Mucuri Valleys – JK Campus; and a degraded area in Biribiri State Park – PEBi. A total of seven species of bees built 115 nests. In the degraded area, only two nests were built. Abundance of built nests was higher in the preserved area (PERP), but diversity was higher in the restored area (JK Campus). Our results show that the solitary bee population responds positively to habitat complexity (local scale). The presence of a diverse solitary bee fauna in the restored area indicates that altered areas should also be protected as suitable areas for re-colonization of cavity-nesting bees.  相似文献   

7.
Snipe Gallinago gallinago breeding on lowland wet grasslands in England have undergone widespread and dramatic declines in abundance and distribution since at least the 1970s. There are many potential drivers of the decline but reductions in habitat quality, driven by land management, are often proposed as a contributing factor in the historical declines of breeding waders. Breeding snipe are now restricted to a few key places such as nature reserves and environmentally sensitive areas where management for breeding waders is implemented. On average, populations have continued to decline, even in these key areas, though population trends vary from a decline of 98% to an increase of 61% between the early 1990s and 2006. We examined the relationship between regional variation in snipe population trends and soil conditions, other habitat features and land management. Snipe were more likely to persist in fields where the soil conditions were wet and soft. Fields are wetter and softer now than in the early 1990s and management influenced these conditions. Soil softness increased with decreasing grazing pressure and increasing surface flooding. Soil moisture increased with surface flooding and was higher in organic soils. Changes in field condition were consistent with decreases in grazing pressure and increases in surface flooding. In spite of habitat condition being altered in a way that should have been beneficial to snipe, the numbers have continued to decline. Thus, it is unlikely that the measures of habitat condition examined here have been the driver of the decline and other factors must be involved. Research efforts should now focus on alternative explanations of the decline, for example, changes in other key aspects of habitat quality such as prey abundance, or changes in snipe productivity or mortality.  相似文献   

8.
9.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   

10.
11.
12.
One common goal of habitat restoration and reconstruction is to reinstate the biodiversity found at intact reference sites. However, few researchers have examined whether these practices reinstate communities of flower‐visiting insects. This is unfortunate, as anthropogenically mediated declines in flower visitors, including bees (the primary pollinators for most terrestrial ecosystems), beetles, flies, and butterflies, have been reported worldwide. Biodiversity declines may be especially severe in North America's tallgrass prairie, a once‐vast grassland that has experienced severe destruction and degradation due to agricultural conversion. As such, we assessed the structure of forb and flower‐visiting insect communities as a whole and two subsets of the flower visitor community—bees and phytophagous beetles—across five tallgrass prairie remnants and five reconstructed prairies (former crop fields) in Kansas from 2013 to 2015. Remnant prairies had significantly higher forb diversity and differed significantly in forb composition, compared to reconstructed prairies. Despite the dissimilarities in forb community structure, there were no differences in flower visitor diversity or abundance between remnants and reconstructed prairies. However, when considered separately, bee communities exhibited significantly greater variability in composition on reconstructed prairies, likely due to the abundance of generalist bee species visiting non‐native legumes at two reconstructed prairies. Our work provides evidence that prairie habitat reconstruction is a valuable tool for reestablishing flower‐visiting insect communities and also emphasizes the considerable role that non‐native species may play in structuring grassland plant–bee interactions.  相似文献   

13.
草地利用移动性的丧失导致生态系统退化,是草地放牧生态学领域兴起的主导性学说.在我国,草地利用移动性的丧失不仅是政策变化导致的,更是众多自然和社会因素叠加演进的结果.草地利用移动性的重建对于中国草地恢复和可持续性管理具有重要意义,但是很难通过恢复传统或季节性轮牧的途径实现.我们可以依托智能围栏、牲畜智能可穿戴设备以及草地...  相似文献   

14.
Wildflower strips (WFS) are amongst the most commonly applied measures to promote pollinators and natural enemies of crop pests in agroecosystems. Their potential to enhance these functionally important insect groups may vary substantially with time since establishment of WFS. However, knowledge on their temporal dynamics remains scarce, hampering recommendations for optimized design and management. We therefore examined temporal dynamics of taxonomic and functional groups of bees and hoverflies in perennial WFS ranging from one to ≥6 years since sowing with a standardized species-rich seed mixture of flowering plants in 18 agricultural landscapes in Switzerland. The abundance of wild bees, honeybees and hoverflies declined after the second year by 89%, 62% and 72%, respectively. Declines in bee abundance and hoverfly species richness were linear and those of aphidophagous hoverflies exponential, while wild bee species richness peaked in the third year. Declines over time generally paralleled decreases in flower abundance (-83%) and flowering species richness (-61%) and an increase in grass cover (+70%) in WFS. Flowering plant species richness showed strong positive relationships with dominant crop-visiting wild bees and aphidophagous hoverflies. Furthermore, dominant crop-visiting wild bees, but not aphidophagous hoverflies, were positively related to the proportion of (semi-)open semi-natural habitat in the surrounding landscape (500 m radius), but negatively with forest. We conclude that the effectiveness of perennial WFS to promote pollinator diversity, crop-pollinating bees and aphidophagous hoverflies through foraging resources decreases after the first two to three years, probably due to a decline of diverse and abundant floral resources. Although older perennial WFS may still provide valuable nesting and overwintering opportunities for pollinators and natural enemies, our findings indicate that regular re-sowing of perennial WFS may be necessary to maintain adequate floral resource provisioning for effective pollinator conservation and promotion of crop pollination and natural pest control services in agricultural landscapes.  相似文献   

15.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

16.
Birds that depend on grassland and successional-scrub vegetation communities are experiencing a greater decline than any other avian assemblage in North America. Habitat loss and degradation on breeding and wintering grounds are among the leading causes of these declines. We used public and private lands in northern Virginia, USA, to explore benefits of grassland management and associated field structure on supporting overwintering bird species from 2013 to 2016. Specifically, we used non-metric multidimensional scaling and multispecies occupancy models to compare species richness and habitat associations of grassland-obligate and successional-scrub species during winter in fields comprised of native warm-season grasses (WSG) or non-native cool-season grasses (CSG) that were managed at different times of the year. Results demonstrated positive correlations of grassland-obligate species with decreased vegetation structure and a higher percentage of grass cover, whereas successional-scrub species positively correlated with increased vegetation structure and height and increased percentages of woody stems, forb cover, and bare ground. Fields of WSG supported higher estimated total and target species richness compared to fields of CSG. Estimated species richness was also influenced by management timing, with fields managed during the previous winter or left unmanaged exhibiting higher estimated richness than fields managed in summer or fall. Warm-season grass fields managed in the previous winter or left unmanaged had higher estimated species richness than any other treatment group. This study identifies important winter habitat associations (e.g., vegetation height and field openness) with species abundance and richness and can be used to make inferences about optimal management practices for overwintering avian species in eastern grasslands of North America. © 2019 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

17.
Aim: Species‐rich Nardus grasslands are high nature‐value habitats. In Switzerland, many of these grasslands are degraded even though they have been under protection since the 1980s. Degradation shows two divergent trends: Nardus grasslands are either dominated by Nardus stricta or by eutrophic plants, both trends leading to the disappearance of typical Nardus grassland species. With this study, we aim to identify the factors that could be adjusted to conserve the integrity of this habitat. Location: Bernese Alps, Switzerland. Methods: In 2016, we investigated the underlying causes of this degradation process by assessing vegetation composition in 48 Nardus grasslands located in the Swiss northern Alps of canton Bern and linking it to soil, management and environmental variables. To explore the effect of the degradation on higher trophic levels, orthopteran species richness and densities were assessed. Results: Results show that Nardus meadows (mown) are rarely degraded compared to Nardus pastures (grazed). Within pastures, eutrophic plants are most abundant on small pastures with low soil carbon/nitrogen ratio, indicating high nutrient availability. Nardus stricta dominance is most problematic on north‐exposed slopes and in summer pastures. A plausible driver of both degradation trends is the grazing management regime: within small pastures at low elevation where the grazing periods are short but intense, soil carbon/nitrogen ratio is low because of high dung deposition, thus the eutrophic species become dominant. Contrastingly, on large summer pastures with low‐intensity and long‐term grazing, N. stricta becomes dominant due to selective grazing. Both degradation trends show a negative impact on the orthopteran density. Conclusion: Species‐rich Nardus grasslands are a precious alpine habitat for specialised plant species and orthopterans. With an extensive mowing regime or a more controlled grazing regime that homogenises intensity in time and space, species‐rich Nardus grasslands can be conserved in Switzerland.  相似文献   

18.
木本植物多度在草原和稀树干草原中增加的研究进展   总被引:10,自引:2,他引:8  
熊小刚  韩兴国  陈全胜  潘庆民 《生态学报》2003,23(11):2436-2443
木本植物多度在草原和稀树干草原中增加已经成为全球范围普遍发生的现象。为揭示这一现象发生的原因,从放牧和气候变化与木本植物多度增加的关系、木本植物多度增加过程中的正反馈作用以及木本植物侵入的关键阶段——幼苗的补充和定居,这三个方面综述了目前的研究结果。强调放牧和气候变化之间的相互共同作用,可能引发了木本植物向草原和稀树干草原中的入侵;而生物引起的正反馈作用则进一步促进了木本植物的扩展。从生态系统干扰的角度,讨论了木本植物多度增加机制的复杂性,并指出木本植物幼苗补充和定居的连续性和间断性两种方式,对于草原和稀树干草原木本植物多度增加的贡献。  相似文献   

19.
  1. Wild bees provide invaluable ecosystem services in agricultural landscapes such as pollination. However, in recent decades, pollinator biodiversity, especially in wild bees, is declining on a global scale, with potentially far‐reaching consequences for crop production. Thus, there is an urgent need to determine whether wild bees are present in agricultural systems, such as fruit orchards.
  2. In the present study, we examined the wild bee fauna at species and community levels during the period of bee activity (May to August) in apple and high‐bush blueberry orchards in New England.
  3. Bee communities are crop‐specific and dominated by very few species, which fluctuate according to crop and season. The blueberry associated bee fauna was more diverse. In apple, communities were phylogenetically clustered at the genus level and dominated by solitary ground nesting bees within the genus Andrena. Species fluctuated widely in presence and abundance throughout the season, leading to differences in community composition and functional trait structure.
  4. The results obtained in the present study show that apple and blueberry harbour a distinct and diverse bee fauna that performs vital pollination services in orchards. Our results provide essential baseline data for wild bees in blueberry and apple orchards and this can be used to improve management and conservation strategies for wild bee preservation in these crops.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号