首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Cyclones have one of the greatest effects on the biodiversity of coral reefs and the associated species. But it is unknown how stochastic alterations in habitat structure influence metapopulation structure, connectivity and genetic diversity. From 1993 to 2018, the reefs of the Capricorn Bunker Reef group in the southern part of the Great Barrier Reef were impacted by three tropical cyclones including cyclone Hamish (2009, category 5). This resulted in substantial loss of live habitat-forming coral and coral reef fish communities. Within 6–8 years after cyclones had devastated, live hard corals recovered by 50–60%. We show the relationship between hard coral cover and the abundance of the neon damselfish (Pomacentrus coelestis), the first fish colonizing destroyed reefs. We present the first long-term (2008–2015 years corresponding to 16–24 generations of P. coelestis) population genetic study to understand the impact of cyclones on the meta-population structure, connectivity and genetic diversity of the neon damselfish. After the cyclone, we observed the largest change in the genetic structure at reef populations compared to other years. Simultaneously, allelic richness of genetic microsatellite markers dropped indicating a great loss of genetic diversity, which increased again in subsequent years. Over years, metapopulation dynamics were characterized by high connectivity among fish populations associated with the Capricorn Bunker reefs (2200 km2); however, despite high exchange, genetic patchiness was observed with annual strong genetic divergence between populations among reefs. Some broad similarities in the genetic structure in 2015 could be explained by dispersal from a source reef and the related expansion of local populations. This study has shown that alternating cyclone-driven changes and subsequent recovery phases of coral habitat can greatly influence patterns of reef fish connectivity. The frequency of disturbances determines abundance of fish and genetic diversity within species.

  相似文献   

2.
The decline of reef‐building corals in conjunction with shifts to short‐lived opportunistic species has prompted concerns that Caribbean reef framework‐building capacity has substantially diminished. Restoring herbivore populations may be a potential driver of coral recovery; however, the impact of herbivores on coral calcification has been little studied. We performed an exclusion experiment to evaluate the impact of herbivory on Orbicella faveolata coral growth over 14 months. The experiment consisted of three treatments: full exclusion cages; half cage procedural controls; and uncaged control plates, each with small O. faveolata colonies. We found that herbivorous fish exclusion had a substantial impact on both macroalgal cover and coral growth. Fleshy macroalgae reached 50% cover within some exclusion cages, but were almost absent from uncaged control plates. Critically, O. faveolata calcification rates were suppressed by almost half within exclusion cages, with monthly coral growth negatively related to overgrowth by fleshy macroalgae. These findings highlight the importance of herbivorous fishes for coral growth and the detrimental impact of macroalgal proliferation in the Caribbean. Policy makers and local managers should consider measures to protect herbivorous fishes and reduce macroalgal proliferation to enable coral communities to continue to grow and function.  相似文献   

3.
Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no‐take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef‐building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer‐shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef‐building genus Acropora for coral reef managers.  相似文献   

4.
Some excavating sponges of the genus Cliona compete with live reef corals, often killing and bioeroding entire colonies. Important aspects affecting distribution of these species, such as dispersal capability and population structure, remain largely unknown. Thus, the aim of this study was to determine levels of genetic connectivity and dispersal of Cliona delitrix across the Greater Caribbean (Caribbean Sea, Bahamas and Florida), to understand current patterns and possible future trends in their distribution and effects on coral reefs. Using ten species‐specific microsatellite markers, we found high levels of genetic differentiation between six genetically distinct populations: one in the Atlantic (Florida‐Bahamas), one specific to Florida and four in the South Caribbean Sea. In Florida, two independent breeding populations are likely separated by depth. Gene flow and ecological dispersal occur among other populations in the Florida reef tract, and between some Florida locations and the Bahamas. Similarly, gene flow occurs between populations in the South Caribbean Sea, but appears restricted between the Caribbean Sea and the Atlantic (Florida‐Bahamas). Dispersal of C. delitrix was farther than expected for a marine sponge and favoured in areas where currents are strong enough to transport sponge eggs or larvae over longer distances. Our results support the influence of ocean current patterns on genetic connectivity, and constitute a baseline to monitor future C. delitrix trends under climate change.  相似文献   

5.
Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coral Orbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRAD and profiled for algal symbiont abundance and type. O. faveolata at the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerant Durusdinium trenchii (formerly Symbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated by D. trenchii. 2bRAD host genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion of D. trenchii was attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably, D. trenchii was rarely dominant in O. faveolata from the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance of D. trenchii was likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys, O. faveolata was most abundant, had the highest bleaching resistance, and contained the most corals dominated by D. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.  相似文献   

6.
The ascidian Trididemnum solidum competes for space on Caribbean reefs and is capable of overgrowing live scleractinian corals. From 2006 to 2009, we monitored over 30,000 coral colonies and quantified competitive interactions with this ascidian at four reef sites along the Mexican Caribbean. The total number of competitive interactions increased in time, but the mean percentage of coral colonies involved in interactions remained lower than 1% in all reefs. Bottom cover by T. solidum was also low (mean < 0.5%) in all reef sites in all sampling years. We conclude that during the temporal scope of our study, the overall potential effect of T. solidum on the dynamics of Mexican Caribbean coral populations was minimal.  相似文献   

7.
Discrepancies between potential and observed dispersal distances of reef fish indicate the need for a better understanding of the influence of larval behaviour on recruitment and dispersal. Population genetic studies can provide insight on the degree to which populations are connected, and the development of restriction site‐associated sequencing (RAD‐Seq) methods has made such studies of nonmodel organisms more accessible. We applied double‐digest RAD‐Seq methods to test for population differentiation in the coral reef‐dwelling cardinalfish, Siphamia tubifer, which based on behavioural studies, have the potential to use navigational cues to return to natal reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from eleven locations over 3 years reveals little genetic differentiation between groups of S. tubifer at spatial scales from 2 to 140 km and between years at one location: pairwise FST values were between 0.0116 and 0.0214. These results suggest that the Kuroshio Current largely influences larval dispersal in the region, and in contrast to expectations based on studies of other cardinalfishes, there is no evidence of population structure for S. tubifer at the spatial scales examined. However, analyses of outlier loci putatively under selection reveal patterns of temporal differentiation that indicate high population turnover and variable larval supply from divergent source populations between years. These findings highlight the need for more studies of fishes across various geographic regions that also examine temporal patterns of genetic differentiation to better understand the potential connections between early life‐history traits and connectivity of reef fish populations.  相似文献   

8.
Mesophotic reefs (30‐150 m) have been proposed as potential refugia that facilitate the recovery of degraded shallow reefs following acute disturbances such as coral bleaching and disease. However, because of the technical difficulty of collecting samples, the connectivity of adjacent mesophotic reefs is relatively unknown compared with shallower counterparts. We used genotyping by sequencing to assess fine‐scale genetic structure of Montastraea cavernosa at two sites at Pulley Ridge, a mesophotic coral reef ecosystem in the Gulf of Mexico, and downstream sites along the Florida Reef Tract. We found differentiation between reefs at Pulley Ridge (~68 m) and corals at downstream upper mesophotic depths in the Dry Tortugas (28–36 m) and shallow reefs in the northern Florida Keys (Key Biscayne, ~5 m). The spatial endpoints of our study were distinct, with the Dry Tortugas as a genetic intermediate. Most striking were differences in population structure among northern and southern sites at Pulley Ridge that were separated by just 12km. Unique patterns of clonality and outlier loci allele frequency support these sites as different populations and suggest that the long‐distance horizontal connectivity typical of shallow‐water corals may not be typical for mesophotic systems in Florida and the Gulf of Mexico. We hypothesize that this may be due to the spawning of buoyant gametes, which commits propagules to the surface, resulting in greater dispersal and lower connectivity than typically found between nearby shallow sites. Differences in population structure over small spatial scales suggest that demographic constraints and/or environmental disturbances may be more variable in space and time on mesophotic reefs compared with their shallow‐water counterparts.  相似文献   

9.
Coral reefs of the Florida Keys typically experience seasonal temperatures of 20–31 °C. Deviation outside this range causes physiological impairment of reef‐building corals, potentially leading to coral colony death. In January and February 2010, two closely spaced cold fronts, possibly driven by an unusually extreme Arctic Oscillation, caused sudden and severe seawater temperature declines in the Florida Keys. Inshore coral reefs [e.g., Admiral Reef (ADM)] experienced lower sustained temperatures (i.e., < 12 °C) than those further offshore [e.g., Little Grecian Reef (LG), minimum temperature = 17.2 °C]. During February and March 2010, we surveyed ADM and observed a mass die‐off of reef‐building corals, whereas 12 km away LG did not exhibit coral mortality. We subsequently measured the physiological effects of low‐temperature stress on three common reef‐building corals (i.e., Montastraea faveolata, Porites astreoides, and Siderastrea siderea) over a range of temperatures that replicated the inshore cold‐water anomaly (i.e., from 20 to 16 to 12 °C and back to 20 °C). Throughout the temperature modulations, coral respiration as well as endosymbiont gross photosynthesis and maximum quantum efficiency of photosystem II were measured. In addition, Symbiodinium genotypic identity, cell densities, and chlorophyll a content were determined at the beginning and conclusion of the experiment. All corals were significantly affected at 12 °C, but species‐specific physiological responses were found indicating different coral and/or Symbiodinium cold tolerances. Montastraea faveolata and P. astreoides appeared to be most negatively impacted because, upon return to 20 °C, significant reductions in gross photosynthesis and dark respiration persisted. Siderastrea siderea, however, readily recovered to pre‐treatment rates of dark respiration and gross photosynthesis. Visual surveys of inshore reefs corroborated these results, with S. siderea being minimally affected by the cold‐water anomaly, whereas M. faveolata and P. astreoides exhibited nearly 100% mortality. This study highlights the importance of understanding the physiological attributes of genotypically distinct coral‐Symbiodinium symbioses that contribute to tolerance, recovery, and consequences to an environmental perturbation. These data also document effects of a rarely studied environmental stressor, possibly initiated by remote global climate events, on coral‐Symbiodinium symbioses and coral reef communities.  相似文献   

10.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

11.
The capacity of coral reefs to maintain their structurally complex frameworks and to retain the potential for vertical accretion is vitally important to the persistence of their ecological functioning and the ecosystem services they sustain. However, datasets to support detailed along‐coast assessments of framework production rates and accretion potential do not presently exist. Here, we estimate, based on gross bioaccretion and bioerosion measures, the carbonate budgets and resultant estimated accretion rates (EAR) of the shallow reef zone of leeward Bonaire – between 5 and 12 m depth – at unique fine spatial resolution along this coast (115 sites). Whilst the fringing reef of Bonaire is often reported to be in a better ecological condition than most sites throughout the wider Caribbean region, our data show that the carbonate budgets of the reefs and derived EAR varied considerably across this ~58 km long fringing reef complex. Some areas, in particular the marine reserves, were indeed still dominated by structurally complex coral communities with high net carbonate production (>10 kg CaCO3 m?2 year?1), high live coral cover and complex structural topography. The majority of the studied sites, however, were defined by relatively low budget states (<2 kg CaCO3 m?2 year?1) or were in a state of net erosion. These data highlight the marked spatial heterogeneity that can occur in budget states, and thus in reef accretion potential, even between quite closely spaced areas of individual reef complexes. This heterogeneity is linked strongly to the degree of localized land‐based impacts along the coast, and resultant differences in the abundance of reef framework building coral species. The major impact of this variability is that those sections of reef defined by low‐accretion rates will have limited capacity to maintain their structural integrity and to keep pace with current projections of climate change induced sea‐level rise (SLR), thus posing a threat to reef functioning and biodiversity, potentially leading to trophic cascades. Since many Caribbean reefs are more severely degraded than those found around Bonaire, it is to be expected that the findings presented here are rather the rule than the exception, but the study also highlights the need for similar high spatial resolution (along‐coast) assessments of budget states and accretion rates to meaningfully explore increasing coastal risk at the country level. The findings also more generally underline the significance of reducing local anthropogenic disturbance and restoring framework building coral assemblages. Appropriately focussed local preservation efforts may aid in averting future large‐scale above reef water depth increases on Caribbean coral reefs and will limit the social and economic implications associated with the loss of reef goods and services.  相似文献   

12.

Caribbean coral cover has decreased substantially in recent decades, with much of the live coral being replaced by macroalgae. Encrusting red algae in the genus Ramicrusta have become abundant throughout the region and have demonstrated widespread harm to corals by overgrowing living tissue, causing colony mortality, and impairing coral recruitment. In this research, Ramicrusta textilis was identified by morpho-anatomy and DNA sequencing from nine sites around St. Thomas, US Virgin Islands, and 3D photogrammetry was used to measure the rate of algal growth on stony corals. 3D models of individual coral colonies (five species plus controls, N = 72) competing with R. textilis revealed differential competitive abilities among taxa, with Siderastrea siderea being the only species capable of inhibiting overgrowth by the alga (mean linear algal growth − 1.1 mm yr−1). Important reef building coral species such as Orbicella annularis and Orbicella faveolata were poor competitors (mean linear algal growth + 15 mm yr−1 and + 7.7 mm yr−1, respectively), indicating that the emergence of the alga could have significant impacts on Caribbean coral reef species diversity, community composition, and structural complexity.

  相似文献   

13.
Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago''s coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching.  相似文献   

14.
This study aimed to evaluate potential differences in coral spawning behavior between a fringing coastal reef and an offshore reef in the southern Caribbean. For this, scleractinian and gorgonian colonies (N = 324) of 21 species were mapped along eight transects, each 10-m long, at two study sites located in Morrocoy and Los Roques National Parks, Venezuela. Observations were made between 19:30 and 23:00 from August 23 to 30 and from September 26 to 30, 2002. Ninety one colonies belonging to six hard coral and seven octocoral species spawned or planulated during this period. We were unable to observe any signs of reproductive activity in 95 colonies of nine species different from those that reproduced. Despite the differences in environmental conditions between the two sites, we observed high synchrony in the spawning behavior of seven coral species common to both reefs. The most striking result was the ability of colonies of Montastraea faveolata and Eusmilia fastigiata to split spawn up to three times, either in consecutive nights or in different months.  相似文献   

15.
Algal contact as a trigger for coral disease   总被引:4,自引:0,他引:4  
Diseases are causing alarming declines in reef‐building coral species, the foundation blocks of coral reefs. The emergence of these diseases has occurred simultaneously with large increases in the abundance of benthic macroalgae. Here, we show that physical contact with the macroalga Halimeda opuntia can trigger a virulent disease known as white plague type II that has caused widespread mortality in most Caribbean coral species. Colonies of the dominant coral Montastraea faveolata exposed to algal transplants developed the disease whereas unexposed colonies did not. The bacterium Aurantimonas coralicida, causative agent of the disease, was present on H. opuntia sampled close to, and away from diseased corals, indicating that the alga serves as a reservoir for this pathogen. Our results suggest that the spread of macroalgae on coral reefs could account for the elevated incidence of coral diseases over past decades and that reduction of macroalgal abundance could help control coral epizootics.  相似文献   

16.

Coral cover and community structure in the Arabian Gulf have changed considerably in recent decades. Recurrent bleaching events have dramatically reduced the abundance of previously dominant Acropora corals and have given space to other more thermally resistant coral taxa. The loss of Acropora spp. has reduced reef structural complexity and associated biodiversity. Sir Bu Nair Island (SBN) is a nature reserve in the United Arab Emirates that sustains some of the last dense and extensive Acropora stands in the southern Gulf. This study investigated coral recruitment at a southern coral reef on SBN and examined larval dispersal and reef connectivity between SBN and other local and regional reefs through an agent-based model coupled with a 3D hydrodynamic model. Recruitment was surveyed with settlement tiles deployed from April to September 2019. Contrary to other reefs in the Gulf, we found that Acropora is indeed the major coral recruiter settling at SBN reefs, followed by Porites. The models indicate that SBN reefs are mostly self-seeding but also connected to other reefs in the Gulf. SBN can supply coral larvae to the neighbouring islands Siri and Abu Musa, and nearby reefs along with the north-eastern Emirates, Iranian coast and Strait of Hormuz. Findings highlight the importance of SBN to protect remnant populations of the locally almost extinct Acropora in a region where natural coral recovery is increasingly sparse.

  相似文献   

17.
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth‐generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15–20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep‐water refugia in M. cavernosa is location‐specific, varying among and within geographic locations likely as a consequence of local hydrology.  相似文献   

18.
Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species (Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10–35 randomly selected local donor colonies will retain at least 50–90% of the genetic diversity of the original population. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Patterns of isolation by distance are uncommon in coral populations. Here, we depart from historical trends of large‐scale, geographical genetic analyses by scaling down to a single patch reef in Kāne‘ohe Bay, Hawai‘i, USA, and map and genotype all colonies of the coral, Pocillopora damicornis. Six polymorphic microsatellite loci were used to assess population genetic and clonal structure and to calculate individual colony pairwise relatedness values. Our results point to an inbred, highly clonal reef (between 53 and 116 clonal lineages of 2352 genotyped colonies) with a much skewed genet frequency distribution (over 70% of the reef was composed of just seven genotypes). Spatial autocorrelation analyses revealed that corals found close together on the reef were more genetically related than corals further apart. Spatial genetic structure disappears, however, as spatial scale increases and then becomes negative at the largest distances. Stratified, random sampling of three neighbouring reefs confirms that reefs are demographically open and inter‐reef genetic structuring was not detected. Attributing process to pattern in corals is complicated by their mixed reproductive strategies. Separate autocorrelation analyses, however, show that the spatial distribution of both clones and nonclones contributes to spatial genetic structure. Overall, we demonstrate genetic structure on an intrareef scale and genetic panmixia on an inter‐reef scale indicating that, for P. damicornis, the effect of small‐ and large‐scale dispersal processes on genetic diversity are not the same. By starting from an interindividual, intrareef level before scaling up to an inter‐reef level, this study demonstrates that isolation‐by‐distance patterns for the coral P. damicornis are limited to small scales and highlights the importance of investigating genetic patterns and ecological processes at multiple scales.  相似文献   

20.
Spatially adjacent habitats on coral reefs can represent highly distinct environments, often harbouring different coral communities. Yet, certain coral species thrive across divergent environments. It is unknown whether the forces of selection are sufficiently strong to overcome the counteracting effects of the typically high gene flow over short distances, and for local adaptation to occur. We screened the coral genome (using restriction site‐associated sequencing) and characterized both the dinoflagellate photosymbiont‐ and tissue‐associated prokaryote microbiomes (using metabarcoding) of a reef flat and slope population of the reef‐building coral, Pocillopora damicornis, at two locations on Heron Island in the southern Great Barrier Reef. Reef flat and slope populations were separated by <100 m horizontally and ~5 m vertically, and the two study locations were separated by ~1 km. For the coral host, genetic divergence between habitats was much greater than between locations, suggesting limited gene flow between the flat and slope populations. Consistent with environmental selection, outlier loci primarily belonged to the conserved, minimal cellular stress response, likely reflecting adaptation to the different temperature and irradiance regimes on the reef flat and slope. The prokaryote community differed across both habitat and, to a lesser extent, location, whereas the dinoflagellate photosymbionts differed by habitat but not location. The observed intraspecific diversity associated with divergent habitats supports that environmental adaptation involves multiple members of the coral holobiont. Adaptive alleles or microbial associations present in coral populations from the environmentally variable reef flat may provide a source of adaptive variation for assisted evolution approaches, through assisted gene flow, artificial cross‐breeding or probiotic inoculations, with the aim to increase climate resilience in the slope populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号