共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasites may influence the outcome of interspecific competition between closely related host species through lower parasite virulence in the host with which they share the longer evolutionary history. We tested this idea by comparing the prevalence of avian malaria (Haemosporidia) lineages and their association with survival in pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breeding in a recent contact zone on the Swedish island of Öland. A nested PCR protocol amplifying haemosporidian fragments of mtDNA was used to screen the presence of malaria lineages in 1048 blood samples collected during 6 years. Competitively inferior pied flycatchers had a higher prevalence of blood parasites, including the lineages that were shared between the two flycatcher species. Multistate mark–recapture models revealed a lower survival of infected versus uninfected female pied flycatchers, while no such effects were detected in male pied flycatchers or in collared flycatchers of either sex. Our results show that a comparatively new host, the collared flycatcher, appears to be less susceptible to a local northern European malarial lineage where the collared flycatchers have recently expanded their distribution. Pied flycatchers experience strong reproductive interference from collared flycatchers, and the additional impact of species‐specific blood parasite effects adds to this competitive exclusion. These results support the idea that parasites can strongly influence the outcome of interspecific competition between closely related host species, but that the invading species need not necessarily be more susceptible to local parasites. 相似文献
2.
O. Hellgren M. J. Wood J. Waldenström D. Hasselquist U. Ottosson M. Stervander S. Bensch 《Journal of evolutionary biology》2013,26(5):1047-1059
Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host‐parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns. 相似文献
3.
Parasite specialization on one or a few host species leads to a reduction in the total number of available host individuals, which may decrease transmission. However, specialists are thought to be able to compensate by increased prevalence in the host population and increased success in each individual host. Here, we use variation in host breadth among a community of avian Haemosporida to investigate consequences of generalist and specialist strategies on prevalence across hosts. We show that specialist parasites are more prevalent than generalist parasites in host populations that are shared between them. Moreover, the total number of infections of generalist and specialist parasites within the study area did not vary significantly with host breadth. This suggests that specialists can infect a similar number of host individuals as generalists, thus compensating for a reduction in host availability by achieving higher prevalence in a single host species. Specialist parasites also tended to infect older hosts, whereas infections by generalists were biased towards younger hosts. We suggest that this reflects different abilities of generalists and specialists to persist in hosts following infection. Higher abundance and increased persistence in hosts suggest that specialists are more effective parasites than generalists, supporting the existence of a trade‐off between host breadth and average host use among these parasites. 相似文献
4.
5.
Laura Gangoso Rafael Gutirrez‐Lpez Josu Martínez‐de la Puente Jordi Figuerola 《Molecular ecology》2019,28(7):1812-1825
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies. 相似文献
6.
7.
Paulo C. Pulgarín‐R Juan P. Gómez Scott Robinson Robert E. Ricklefs Carlos Daniel Cadena 《Ecology and evolution》2018,8(8):3800-3814
Environmental factors strongly influence the ecology and evolution of vector‐borne infectious diseases. However, our understanding of the influence of climatic variation on host–parasite interactions in tropical systems is rudimentary. We studied five species of birds and their haemosporidian parasites (Plasmodium and Haemoproteus) at 16 sampling sites to understand how environmental heterogeneity influences patterns of parasite prevalence, distribution, and diversity across a marked gradient in water availability in northern South America. We used molecular methods to screen for parasite infections and to identify parasite lineages. To characterize spatial heterogeneity in water availability, we used weather‐station and remotely sensed climate data. We estimated parasite prevalence while accounting for spatial autocorrelation, and used a model selection approach to determine the effect of variables related to water availability and host species on prevalence. The prevalence, distribution, and lineage diversity of haemosporidian parasites varied among localities and host species, but we found no support for the hypothesis that the prevalence and diversity of parasites increase with increasing water availability. Host species and host × climate interactions had stronger effects on infection prevalence, and parasite lineages were strongly associated with particular host species. Because climatic variables had little effect on the overall prevalence and lineage diversity of haemosporidian parasites across study sites, our results suggest that independent host–parasite dynamics may influence patterns in parasitism in environmentally heterogeneous landscapes. 相似文献
8.
9.
Antón Pérez‐Rodríguez Iván de la Hera Sofía Fernández‐González Javier Pérez‐Tris 《Global Change Biology》2014,20(8):2406-2416
The importance of parasitism for host populations depends on local parasite richness and prevalence: usually host individuals face higher infection risk in areas where parasites are most diverse, and host dispersal to or from these areas may have fitness consequences. Knowing how parasites are and will be distributed in space and time (in a context of global change) is thus crucial from both an ecological and a biological conservation perspective. Nevertheless, most research articles focus just on elaborating models of parasite distribution instead of parasite diversity. We produced distribution models of the areas where haemosporidian parasites are currently highly diverse (both at community and at within‐host levels) and prevalent among Iberian populations of a model passerine host: the blackcap Sylvia atricapilla; and how these areas are expected to vary according to three scenarios of climate change. On the basis of these models, we analysed whether variation among populations in parasite richness or prevalence are expected to remain the same or change in the future, thereby reshuffling the geographic mosaic of host‐parasite interactions as we observe it today. Our models predict a rearrangement of areas of high prevalence and richness of parasites in the future, with Haemoproteus and Leucocytozoon parasites (today the most diverse genera in blackcaps) losing areas of high diversity and Plasmodium parasites (the most virulent ones) gaining them. Likewise, the prevalence of multiple infections and parasite infracommunity richness would be reduced. Importantly, differences among populations in the prevalence and richness of parasites are expected to decrease in the future, creating a more homogeneous parasitic landscape. This predicts an altered geographic mosaic of host‐parasite relationships, which will modify the interaction arena in which parasite virulence evolves. 相似文献
10.
Identifying robust environmental predictors of infection probability is central to forecasting and mitigating the ongoing impacts of climate change on vector‐borne disease threats. We applied phylogenetic hierarchical models to a data set of 2,171 Western Palearctic individual birds from 47 species to determine how climate and landscape variation influence infection probability for three genera of haemosporidian blood parasites (Haemoproteus, Leucocytozoon, and Plasmodium). Our comparative models found compelling evidence that birds in areas with higher vegetation density (captured by the normalized difference vegetation index [NDVI]) had higher likelihoods of carrying parasite infection. Magnitudes of this relationship were remarkably similar across parasite genera considering that these parasites use different arthropod vectors and are widely presumed to be epidemiologically distinct. However, we also uncovered key differences among genera that highlighted complexities in their climate responses. In particular, prevalences of Haemoproteus and Plasmodium showed strong but contrasting relationships with winter temperatures, supporting mounting evidence that winter warming is a key environmental filter impacting the dynamics of host‐parasite interactions. Parasite phylogenetic community diversities demonstrated a clear but contrasting latitudinal gradient, with Haemoproteus diversity increasing towards the equator and Leucocytozoon diversity increasing towards the poles. Haemoproteus diversity also increased in regions with higher vegetation density, supporting our evidence that summer vegetation density is important for structuring the distributions of these parasites. Ongoing variation in winter temperatures and vegetation characteristics will probably have far‐reaching consequences for the transmission and spread of vector‐borne diseases. 相似文献
11.
Robert E. Ricklefs Leticia Soares Vincenzo A. Ellis Steven C. Latta 《Journal of Biogeography》2016,43(7):1277-1286
12.
Lisa N. Barrow Sabrina M. McNew Nora Mitchell Spencer C. Galen Holly L. Lutz Heather Skeen Thomas Valqui Jason D. Weckstein Christopher C. Witt 《Ecology letters》2019,22(6):987-998
Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions. 相似文献
13.
Antón Pérez‐Rodríguez Sofía Fernández‐González Iván de la Hera Javier Pérez‐Tris 《Global Change Biology》2013,19(11):3245-3253
Understanding how environmental variation influences the distribution of parasite diversity is critical if we are to anticipate disease emergence risks associated with global change. However, choosing the relevant variables for modelling current and future parasite distributions may be difficult: candidate predictors are many, and they seldom are statistically independent. This problem often leads to simplistic models of current and projected future parasite distributions, with climatic variables prioritized over potentially important landscape features or host population attributes. We studied avian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon (which are viewed as potential emergent pathogens) in 37 Iberian blackcap Sylvia atricapilla populations. We used Partial Least Squares regression to assess the relative importance of a wide array of putative determinants of variation in the diversity of these parasites, including climate, landscape features and host population migration. Both prevalence and richness of parasites were predominantly related to climate (an effect which was primarily, but not exclusively driven by variation in temperature), but landscape features and host migration also explained variation in parasite diversity. Remarkably, different models emerged for each parasite genus, although all parasites were studied in the same host species. Our results show that parasite distribution models, which are usually based on climatic variables alone, improve by including other types of predictors. Moreover, closely related parasites may show different relationships to the same environmental influences (both in magnitude and direction). Thus, a model used to develop one parasite distribution can probably not be applied identically even to the most similar host–parasite systems. 相似文献
14.
Meghann B. Humphries Matthew T. Stacy Robert E. Ricklefs 《Ecology and evolution》2019,9(13):7741-7751
15.
16.
Haemosporidian parasites, which require both a vertebrate and invertebrate host, are most commonly studied in the life stages occurring in the vertebrate. However, aspects of the vector's behaviour and biology can have profound effects on parasite dynamics. We explored the effects of a haemosporidian parasite, Haemoproteus iwa, on a hippoboscid fly vector, Olfersia spinifera. Olfersia spinifera is an obligate ectoparasite of the great frigatebird, Fregata minor, living among bird feathers for all of its adult life. This study examined the movements of O. spinifera between great frigatebird hosts. Movement, or host switching, was inferred by identifying host (frigatebird) microsatellite genotypes from fly bloodmeals that did not match the host from which the fly was collected. Such host switches were analysed using a logistic regression model, and the best‐fit model included the H. iwa infection status of the fly and the bird host sex. Uninfected flies were more likely to have a bird genotype in their bloodmeal that was different from their current host's genotype (i.e. to have switched hosts) than infected flies. Flies collected from female birds were more likely to have switched hosts than those collected on males. Reduced movement of infected flies suggests that there may be a cost of parasitism for the fly. The effect of host sex is probably driven by differences in the sex ratio of bird hosts available to moving flies. 相似文献
17.
Joshua G. Lynton‐Jenkins Aisha C. Bründl Maxime Cauchoix La A. Lejeune Louis Sall Alice C. Thiney Andrew F. Russell Alexis S. Chaine Camille Bonneaud 《Ecology and evolution》2020,10(12):6097-6111
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution. 相似文献
18.
Boris Makanga Carlo Costantini Nil Rahola Patrick Yangari Virginie Rougeron Diego Ayala Franck Prugnolle Christophe Paupy 《Ecology and evolution》2017,7(19):7578-7584
Most emerging infectious diseases are zoonoses originating from wildlife among which vector‐borne diseases constitute a major risk for global human health. Understanding the transmission routes of mosquito‐borne pathogens in wildlife crucially depends on recording mosquito blood‐feeding patterns. During an extensive longitudinal survey to study sylvatic anophelines in two wildlife reserves in Gabon, we collected 2,415 mosquitoes of which only 0.3% were blood‐fed. The molecular analysis of the blood meals contained in guts indicated that all the engorged mosquitoes fed on wild ungulates. This direct approach gave only limited insights into the trophic behavior of the captured mosquitoes. Therefore, we developed a complementary indirect approach that exploits the occurrence of natural infections by host‐specific haemosporidian parasites to infer Anopheles trophic behavior. This method showed that 74 infected individuals carried parasites of great apes (58%), ungulates (30%), rodents (11%) and bats (1%). Accordingly, on the basis of haemosporidian host specificity, we could infer different feeding patterns. Some mosquito species had a restricted host range (An. nili only fed on rodents, whereas An. carnevalei, An. coustani, An. obscurus, and An. paludis only fed on wild ungulates). Other species had a wider host range (An. gabonensis could feed on rodents and wild ungulates, whereas An. moucheti and An. vinckei bit rodents, wild ungulates and great apes). An. marshallii was the species with the largest host range (rodents, wild ungulates, great apes, and bats). The indirect method substantially increased the information that could be extracted from the sample by providing details about host‐feeding patterns of all the mosquito species collected (both fed and unfed). Molecular sequences of hematophagous arthropods and their parasites will be increasingly available in the future; exploitation of such data with the approach we propose here should provide key insights into the feeding patterns of vectors and the ecology of vector‐borne diseases. 相似文献
19.