首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims Comparisons of the trait–abundance relationships from various habitat types are critical for community ecology, which can offer us insights about the mechanisms underlying the local community assembly, such as the relative role of neutral vs. niche processes in shaping community structure. Here, we explored the responses of trait–abundance relationships to nitrogen (N), phosphorus (P) and potassium (K) fertilization in an alpine meadow.Methods Five fertilization treatments (an unfertilized control and additions of N, P, K and NPK respectively) were implemented using randomized block design in an alpine Tibetan meadow. Species relative abundance (SRA), plant above-ground biomass and species richness were measured in each plot. For 24 common species, we measured species functional traits: saturated height, specific leaf area (SLA) and leaf dry matter content (LDMC) in each treatment but seed size only in the unfertilized control. Standard major axis (SMA) regression and phylogenetically independent contrasts (PICs) analysis were used to analyse species trait–abundance relationships in response to different fertilization treatments.Important findings Positive correlations between SRA and saturated height were raised following N, P and NPK fertilizations, which indicated an increase in light competition in these plots. In P fertilized plots, SRA was also positively correlated with LDMC because tall grasses with a nutrients conservation strategy often have a relative competitive advantage in capturing limited light and soil nutrients. In K fertilized plots, neither the trait–abundance relationships nor above-ground biomass or species richness significantly differed from that in the control, which suggests that K was not a limiting resource in our study site. These significant correlations between species traits and relative abundance in fertilized treatment suggest that trait-based selection plays an important role in determining species abundance within local communities in alpine meadows.  相似文献   

2.
Leaf anatomy varies with abiotic factors and is an important trait for understanding plant adaptive responses to environmental conditions. Leaf mass per area (LMA) is a key morphological trait and is related to leaf performance, such as light‐saturated photosynthetic rate per leaf mass, leaf mechanical strength, and leaf lifespan. LMA is the multiplicative product of leaf thickness (LT) and leaf density (LD), both of which vary with leaf anatomy. Nevertheless, how LMA, LT, and LD covary with leaf anatomy is largely unexplored along natural environmental gradients. Slope aspect is a topographic factor that underlies variations in solar irradiation, air temperature, humidity, and soil fertility. In the present study, we examined (1) how leaf anatomy varies with different slope aspects and (2) how leaf anatomy is related to LMA, LD, and LT. Leaf anatomy was measured for 30 herbaceous species across three slope aspects (south‐, west‐, and north‐facing slopes; hereafter, SFS, WFS, and NFS, respectively) in an eastern Tibetan subalpine meadow. For 18 of the 30 species, LMA data were available from previous studies. LD was calculated as LMA divided by LT. Among the slope aspects, the dominant species on the SFS exhibited the highest LTs with the thickest spongy mesophyll layers. The thicker spongy mesophyll layer was related to a lower LD via larger intercellular airspaces. In contrast, LD was the highest on NFS among the slope aspects. LMA was not significantly different among the slope aspects because higher LTs on SFS were effectively offset by lower LDs. These results suggest that the relationships between leaf anatomy and LMA were different among the slope aspects. Mechanisms underlying the variations in leaf anatomy may include different solar radiation, air temperatures, soil water, and nutrient availabilities among the slope aspects.  相似文献   

3.
Phylogenetically informed trait comparisons across entire communities show promise in advancing community ecology. We use this approach to better understand the composition of a community of winter annual plants with multiple decades of monitoring and detailed morphological, phenological and physiological measurements. Previous research on this system revealed a physiological trade‐off among dominant species that accurately predicts population and community dynamics. Here we expanded our investigation to 51 species, representing 96% of individual plants recorded over 30 years, and analysed trait relationships in the context of species abundance and phylogenetic relationships. We found that the functional‐trait trade‐off scales to the entire community, albeit with diminished strength. It is strongest for dominant species and weakens as progressively rarer species are included. The trade‐off has been consistently expressed over three decades of environmental change despite some turnover in the identity of dominant species.  相似文献   

4.
Land‐use and management are disturbance factors that have diverse effects on community composition and structure. In traditional rural grasslands, such as meadows and pastures, low‐intensity management is maintained to enhance biodiversity. Maintenance of road verges, in turn, creates habitat, which may complement traditional rural grasslands. To evaluate the effect of low‐intensity disturbance on insect communities, we characterized species abundance distributions (SAD) for Carabidae, Formicidae, and Heteroptera in three grassland types, which differed in management: meadows, pastures, and road verges. The shape of SAD was estimated with three parameters: abundance decay rate, dominance, and rarity. We compared the SAD shape among the grassland types and tested the effect of environmental heterogeneity (plant species richness) and disturbance intensity (trampling in pastures) on SADs. The shape of SADs did not differ among the grassland types but among the taxonomic groups instead. Abundance decay rate and dominance were larger for Formicidae, and rarity smaller, than for Carabidae and Heteroptera. For Carabidae and window‐trapped Heteroptera, rarity increased with increasing plant species richness. For Formicidae, dominance increased with trampling intensity in pastures. Although the SAD shape remained largely unchanged, the identity of the dominant species tended to vary within and among grassland types. Our study shows that for a given taxonomic group, the SAD shape is similar across habitat types with low‐intensity disturbances resulting from different management. This suggests that SADs respond primarily to the intensity of disturbance and thus could be best used in monitoring communities across strong disturbance and environmental gradients. Because taxonomic groups can inherently have different SADs, taxon‐specific SADs for undisturbed communities must be empirically documented before the SAD shape can be used as an indicator of environmental change. Because the identity of the dominant species changes from management type to another, the SAD shape alone is not an adequate monitoring tool.  相似文献   

5.
6.
The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait‐based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance‐weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.  相似文献   

7.
藏北高寒草甸群落结构与物种组成对增温与施氮的响应   总被引:2,自引:0,他引:2  
宗宁  柴曦  石培礼  蒋婧  牛犇  张宪洲  何永涛 《生态学杂志》2016,27(12):3739-3748
气候变暖和氮沉降增加作为全球环境问题,将严重影响陆地生态系统的结构与功能.研究发现,近几十年来青藏高原增温显著,其中冬季升温最明显.而已有的研究更多关注全年增温,对冬季增温研究较少.本文基于高寒草甸地区增温和氮素添加影响研究的不足,在青藏高原高寒草甸区开展模拟增温和氮添加试验,研究长期增温与氮添加对高寒草甸群落结构与物种组成的影响.试验布设于2010年7月,地点在西藏当雄高寒草甸区,共有3种增温方式:对照、全年增温、冬季增温;每种增温处理下设置5个氮素添加梯度:0、10、20、40、80 kg N·hm-2·a-1,系统研究气候变暖与氮添加对高寒草甸生态系统群落结构与物种组成的影响.结果表明: 2012—2014年,增温与施氮处理均显著影响群落总盖度:全年增温处理降低了群落总盖度;在不施氮处理下,冬季增温降低了群落盖度,但在施氮处理下,随着氮剂量的提高群落盖度逐渐升高.增温与施氮对不同功能群植物的影响不同,增温处理降低了禾草与莎草植物盖度,而施氮提高了禾草植物盖度.相关分析表明,植被群落总盖度与生长旺盛期土壤含水量呈正相关关系,推测在降雨较少的季节增温导致的土壤含水量降低是群落盖度降低的主要原因.半干旱区高寒草甸土壤水分主要受降雨的调控,未来气候变化情景下,降雨时空格局的改变会显著影响植被群落盖度及组成,且大气氮沉降的增加对植被群落的影响也依赖于降雨条件的变化.  相似文献   

8.
Much theoretical evidence has demonstrated that a trade‐off between competitive and dispersal ability plays an important role in facilitating species coexistence. However, experimental evidence from natural communities is still rare. Here, we tested the competition–dispersal trade‐off hypothesis in an alpine grassland in the Tianshan Mountains, Xinjiang, China, by quantifying competitive and dispersal ability using a combination of 4 plant traits (seed mass, ramet mass, height, and dispersal mode). Our results show that the competition–dispersal trade‐off exists in the alpine grassland community and that this pattern was primarily demonstrated by forbs. The results suggest that most forb species are constrained to be either good competitors or good dispersers but not both, while there was no significant trade‐off between competitive and dispersal ability for most graminoids. This might occur because graminoids undergo clonal reproduction, which allows them to find more benign microenvironments, forage for nutrients across a large area and store resources in clonal structures, and they are thus not strictly limited by the particular resources at our study site. To the best of our knowledge, this is the first time the CD trade‐off has been tested for plants across the whole life cycle in a natural multispecies plant community, and more comprehensive studies are still needed to explore the underlying mechanisms and the linkage between the CD trade‐off and community composition.  相似文献   

9.
10.
Plant growth rates strongly determine ecosystem productivity and are a central element of plant ecological strategies. For laboratory and glasshouse‐grown seedlings, specific leaf area (SLA; ratio of leaf area to mass) is a key driver of interspecific variation in growth rate (GR). Consequently, SLA is often assumed to drive GR variation in field‐grown adult plants. However, there is an increasing evidence that this is not the general case. This suggests that GR – SLA relationships (and perhaps those for other traits) may vary depending on the age or size of the plants being studied. Here we investigated GR – trait relationships and their size dependence among 17 woody species from an open‐canopy, fire‐prone savanna in northern Australia. We tested the predictions that SLA and stem diameter growth rate would be positively correlated in saplings but unrelated in adults while, in both age classes, faster‐GR species would have higher light‐saturated photosynthetic rate (Asat), higher leaf nutrient concentrations, higher branch‐scale biomass allocation to leaf versus stem tissues and lower wood density (WD). SLA showed no relationship to stem diameter GR, even in saplings, and the same was true of leaf N and P concentrations, and WD. However, branch‐scale leaf:stem allocation was strongly related to GR in both age groups, as was Asat. Together, these two traits accounted for up to 80% of interspecific variation in adult GR, and 41% of sapling GR. Asat is rarely measured in field‐based GR studies, and this is the first report of branch‐scale leaf:stem allocation (analogous to a benefit:cost ratio) in relation to plant growth rate. Our results suggest that we may yet find general trait‐drivers of field growth rates, but SLA will not be one.  相似文献   

11.
Whether plant communities in a given region converge towards a particular stable state during succession has long been debated, but rarely tested at a sufficiently long time scale. By analysing a 50‐year continuous study of post‐agricultural secondary succession in New Jersey, USA, we show that the extent of community convergence varies with the spatial scale and species abundance classes. At the larger field scale, abundance‐based dissimilarities among communities decreased over time, indicating convergence of dominant species, whereas incidence‐based dissimilarities showed little temporal tend, indicating no sign of convergence. In contrast, plots within each field diverged in both species composition and abundance. Abundance‐based successional rates decreased over time, whereas rare species and herbaceous plants showed little change in temporal turnover rates. Initial abandonment conditions only influenced community structure early in succession. Overall, our findings provide strong evidence for scale and abundance dependence of stochastic and deterministic processes over old‐field succession.  相似文献   

12.
森林群落的构建过程及其内在机制是生态学研究的热点问题。植物功能性状是指能够代表植物的生活史策略,反映植物对环境变化响应的一系列植物属性。通过植物功能性状的分布格局及其对环境因素的响应有助于推测群落的构建过程及其内在作用机制。以吉林蛟河21.12hm2温带针阔混交林样地为研究对象,采集并测量了样地内34种木本植物的6种不同的功能性状。以20m×20m的样方为研究单元,通过计算平均成对性状距离指数(mean pairwise trait distance;PW)和平均最近邻体性状距离指数(mean nearest neighbor trait distance;NN)来探讨群落中单个性状和综合性状的分布格局。同时结合地形因子采用回归分析探讨功能性状的分布格局对局域生境变化的响应。基于PW的结果显示:单个性状中除叶面积外,其余性状的分布格局均为聚集分布多于离散分布;基于NN的结果显示:除叶面积和最大树高外,其余性状的分布格局为聚集分布多于离散分布。此外,由6种单个性状组成的综合性状的分布格局同样为聚集分布多于离散分布。基于回归分析的结果显示:森林群落中功能性状的分布格局受到海拔、坡度和坡向等因素的显著影响,而凹凸度的影响则不显著。研究结果表明包括环境过滤和生物相互作用的非随机过程能够影响温带针阔混交林的群落构建过程,中性过程对该区域群落构建过程的影响不显著。  相似文献   

13.
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population‐level analogous above‐ and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species‐specific responses to combinations of influences. The strength of intraspecific above‐ and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above‐ and belowground traits to these multiple environmental factors together with partially species‐specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource‐acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above‐ and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species‐centred ecological theories on how plants respond to their environments (e.g. competitive/stress‐tolerant/ruderal and response‐effect trait frameworks) to be adapted to account for distinct plant‐environment interactions among distinct individuals of the same species and parts of the same individual.  相似文献   

14.
Both nutrient cycling and nutrient relationships between mistletoe and host have been widely studied; yet it is unclear whether high nutrient concentrations commonly found in mistletoes affect rates of nutrient cycling. To address this question, we assessed 13 elements in the leaf litter of a temperate eucalypt forest in southern New South Wales, comparing concentrations from trees (Eucalyptus blakelyi, E. dwyeri, and E. dealbata) with and without the hemiparasitic mistletoe Amyema miquelii. Results were in accord with previous research on fresh leaves showing that concentrations of many elements were higher in the mistletoe than the host. This was not the case for all elements; most notably for N, where concentrations were significantly lower in the mistletoe. However, the return of all elements increased with mistletoe infection because of the combined effect of enrichment in mistletoe tissues and high rates of mistletoe litterfall. Annual returns of N and P in leaf litter increased by a factor of 1.65 and 3 respectively, with the greatest increase being for K by a factor of 43 in spring. These increased element returns were not significantly influenced by any changes in host leaf litter quality, as mistletoe infection was not found to affect host element concentrations. Mistletoe infection also altered the spatial and temporal distribution of element returns because of the patchy occurrence of mistletoes and extended period of mistletoe litterfall compared with the host. These findings provide a mechanistic explanation for the role of mistletoes as a keystone resource and, together with comparable results from root‐parasitic plants in boreal tundra and cool‐temperate grasslands, suggest that enhancing nutrient return rates may be a generalized property of parasitic plants.  相似文献   

15.
Aboveground fungal pathogens can substantially reduce biomass production in grasslands. However, we lack a mechanistic understanding of the drivers of fungal pathogen infection and impact. Using a grassland global change and biodiversity experiment we show that the trade‐off between plant growth and defense is the main determinant of infection incidence. In contrast, nitrogen addition only indirectly increased incidence via shifting plant communities towards faster growing species. Plant diversity did not decrease incidence, likely because spillover of generalist pathogens or dominance of susceptible plants counteracted negative diversity effects. A fungicide treatment increased plant biomass production and high levels of infection incidence were associated with reduced biomass. However, pathogen impact was context dependent and infection incidence reduced biomass more strongly in diverse communities. Our results show that a growth‐defense trade‐off is the key driver of pathogen incidence, but pathogen impact is determined by several mechanisms and may depend on pathogen community composition.  相似文献   

16.
It is widely recognized that colonists and competitors dominate early and late succession, respectively, with selected species having different colonizing and competitive abilities. However, it remains unknown whether colonizing and competitive ability can determine species abundance directly over succession. The data for five key functional traits were collected (photosynthesis rate, leaf turgor loss point, leaf proline content, seed mass, and seed germination rate), which are direct indicators of plant competitive and colonizing abilities including growth, drought and cold stress resistance, dispersal, and seed dormancy. Here, we tested the effects of colonizing and competitive abilities on species abundance, by employing a linear mixed‐effects model to examine the shifts in the relationship between species abundance and these five colonization and competition‐related traits in species‐rich subalpine secondary successional meadows (at 4, 6, 10, 13 years of age, and undisturbed, respectively) of the Qinghai–Tibetan Plateau. The abundant species at the early‐successional meadows tend to have high photosynthetic rate, high leaf proline content, low seed mass, and seed germination rate for having high colonizing ability, but low competitive ability. By contrast, late‐successional communities tend to be dominated by species with high competitive ability, but low colonizing ability, indicated by large seeds, high seed germination rate, low photosynthetic rate, and leaf proline content. The observed directional shifts in the relationships between traits (photosynthetic rate, leaf proline content, seed mass, and seed germination rate) and abundance with successional age, bring two new understandings of community assembly during succession of subalpine meadows in the Qinghai–Tibetan Plateau. First, it discloses that the differences in species abundance over succession can be directly attributed to differences in colonizing and competitive abilities of different species. Second, it expands the effects of multiple life historical differences including growth, resource competitive ability, cold stress resistance, dispersal, and seed germination strategy, represented by functional traits on community assembly along succession, that is, from the species to the community level.  相似文献   

17.
Testing how local environmental conditions influence plant community assembly is important to understand the underlying mechanisms that promote and/or maintain biodiversity. Functional traits are used to find the broad spectrum of resource use strategies that plants use to respond to environmental variation. The patterns and drivers of plant community assembly through the lens of traits and phylogeny; however, remain to be studied in a uniquely biodiversity rich but poorly known fragmented dry Afromontane forest of Ethiopia. Here, we combined trait and community phylogenetic data from thirty sampling plots of 20 × 20 m size to determine the functional and phylogenetic structures and their drivers in a fragmented, human-dominated dry evergreen Afromontane forest. We found phylogenetic and functional clustering of plants in which the effect of environment was found to be trait specific. A weak phylogenetic signal for traits was detected suggesting that species resource use strategies may not be inferred using species phylogenetic distance. Additionally, we found functional traits to be weak in predicting species abundance distribution. Overall, while this study shows a non-random community assembly pattern, it also highlights the importance of deterministic processes being trait specific.  相似文献   

18.
以青藏高原亚高寒草甸为研究对象,采用随机区组设计,通过连续4a添加N、P,研究了不同施肥(N、P、N+P)处理下群落物种丰富度、种多度分布模式以及群落相似性的变化特征。结果显示:(1)N、N+P连续添加4年后,随N素添加水平的增加,草地植物群落物种丰富度逐渐降低(P0.001);种多度分布曲线的斜率逐渐增大;N+P添加处理对植物群落物种丰富度和种多度分布(SAD)曲线的影响较单独N添加处理更显著,如N15P15处理下群落物种丰富度的降幅最大,达对照群落的65.5%;(2)单一N或N+P处理中,不同添加量间的植被组成趋异,而相同添加量的植被组成趋同(stress level=0.152);(3)N、N+P添加引起刷状根的丛生型禾本科植物逐渐在植物群落中占据优势;(4)P素添加对群落物种丰富度、种多度分布曲线、群落相似性和不同生长型组成及比例的影响不显著;(5)植物生长型特征和N/P添加处理可解释56.97%植物群落的物种多度分布特征。这些结果表明:亚高寒草甸地区N添加引起植物群落组成的重新排序、优势种的变化、SAD曲线逐渐陡峭,群落的相似性增加;N富集时,添加P素会增加N素的利用效率,且群落结构受N、P供应水平的影响。  相似文献   

19.
Global nitrogen (N) enrichment and changing precipitation regimes are likely to alter plant community structure and composition, with consequent influences on biodiversity and ecosystem functioning. Responses of plant community structure and composition to N addition and increased precipitation were examined in a temperate steppe in northern China. Increased precipitation and N addition stimulated and suppressed community species richness, respectively, across 6 years (2005–2010) of the manipulative experiment. N addition and increased precipitation significantly altered plant community structure and composition at functional groups levels. The significant relationship between species richness and soil moisture (SM) suggests that plant community structure is mediated by water under changing environmental conditions. In addition, plant height played an important role in affecting the responses of plant communities to N addition, and the effects of increased precipitation on plant community were dependent on species rooting depth. Our results highlight the importance and complexity of both abiotic (SM) and biotic factors (species traits) in structuring plant community under changing environmental scenarios. These findings indicate that knowledge of species traits can contribute to mechanistic understanding and projection of vegetation dynamics in response to future environmental change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号