共查询到20条相似文献,搜索用时 15 毫秒
1.
The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity 总被引:1,自引:0,他引:1
Crispo E 《Evolution; international journal of organic evolution》2007,61(11):2469-2479
Two different, but related, evolutionary theories pertaining to phenotypic plasticity were proposed by James Mark Baldwin and Conrad Hal Waddington. Unfortunately, these theories are often confused with one another. Baldwin's notion of organic selection posits that plasticity influences whether an individual will survive in a new environment, thus dictating the course of future evolution. Heritable variations can then be selected upon to direct phenotypic evolution (i.e., "orthoplasy"). The combination of these two processes (organic selection and orthoplasy) is now commonly referred to as the "Baldwin effect." Alternately, Waddington's genetic assimilation is a process whereby an environmentally induced phenotype, or "acquired character," becomes canalized through selection acting upon the developmental system. Genetic accommodation is a modern term used to describe the process of heritable changes that occur in response to a novel induction. Genetic accommodation is a key component of the Baldwin effect, and genetic assimilation is a type of genetic accommodation. I here define both the Baldwin effect and genetic assimilation in terms of genetic accommodation, describe cases in which either should occur in nature, and propose that each could play a role in evolutionary diversification. 相似文献
2.
Samuel M. Scheiner Roberta L. Caplan Richard F. Lyman 《Journal of evolutionary biology》1991,4(1):51-68
We examined the relationship of three aspects of development, phenotypic plasticity, genetic correlations among traits, and developmental noise, for thorax length, wing length, and number of sternopleural bristles in Drosophila melanogaster. We used 14 lines which had previously been selected on either thorax length or plasticity of thorax length in response to temperature. A half-sib mating design was used and offspring were raised at 19° C or 25° C. We found that genetic correlations were stable across temperatures despite the large levels of plasticity of these traits. Plasticities were correlated among developmentally related traits, thorax and wing length, but not among unrelated traits, lengths and bristle counts. Amount of developmental noise, measured as fluctuating asymmetry and within-environmental variation, was positively correlated with amount of plasticity only for some traits, thorax length and bristle number, and only at one temperature, 25° C. 相似文献
3.
Despite the apparent advantages of adaptive plasticity, it is not common. We examined the effects of variation and uncertainty on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of multiple loci whose phenotypic expression either are affected (plastic) or are not affected (nonplastic) by the environment. Typically, evolution occurred first as genetic differentiation, which was then replaced by the evolution of adaptive plasticity, opposite to the evolutionary trend that is often assumed. Increasing dispersal rates selected for plasticity, if selection occurred before dispersal. If selection occurred after dispersal, the highest plasticity was at intermediate dispersal rates. Temporal variation in the environment occurring after development, but before selection, favored the evolution of plasticity. With dispersal before selection, such temporal variation resulted in hyperplasticity, with a reaction norm much steeper than the optimum. This effect was enhanced with negative temporal autocorrelation and can be interpreted as representing a form of bet hedging. As the number of nonplastic loci increased, plasticity was disfavored due to an increase in the uncertainty of the genomic environment. This effect was reversed with temporal variation. Thus, variation and uncertainty affect whether or not plasticity is favored with different sources of variation-arising from the amount and timing of dispersal, from temporal variation, and even from the genetic architecture underlying the phenotype-having contrasting, interacting, and at times unexpected effects. 相似文献
4.
We explore the effects of linear and quadratic reaction norms on heritability and directional selection. Genetic variation for reaction norm parameters can alter the heritability of traits; the magnitude of the heritability depends upon both the environment and the correlation among the parameters. Genetic variation for reaction norm parameters can alter the response to directional selection. Selection on a trait in one environment can shift both the mean of the trait measured across environments and the plasticity of the trait; the signs and magnitudes of these responses depend on the correlations among the parameters of the reaction norm. Our model is consistent with the results of ten experiments for selection on a trait in a single environment. In all experiments, selection towards the overall mean of the population always resulted in a relatively lower plasticity than selection away from the overall mean. Our model was able to predict the results of two experiments for selection on a trait index calculated over more than one environment. Predictions were good for the direct response to selection but poorer for the correlated response to selection. Our results indicate the need for more data on the effects of environment on genetic parameters, especially correlations among reaction norm parameters. 相似文献
5.
In a spatially heterogeneous environment, the rate at which individuals move among habitats affects whether selection favors phenotypic plasticity or genetic differentiation, with high dispersal rates favoring trait plasticity. Until now, in theoretical explorations of plasticity evolution, dispersal rate has been treated as a fixed, albeit probabilistic, characteristic of a population, raising the question of what happens when the propensity to disperse and trait plasticity are allowed to evolve jointly. We examined the effects of their joint evolution on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of loci whose phenotypic expression either are affected by the environment (plastic) or are not affected (nonplastic), plus a locus determining the propensity to disperse. When dispersal rate and trait plasticity evolve jointly, the system tends to dichotomous outcomes of either high trait plasticity and high dispersal, or low trait plasticity and low dispersal. The outcome strongly depended on starting conditions, with high trait plasticity and dispersal favored when the system started at high values for either trait plasticity or dispersal rate (or both). Adding a cost of plasticity tended to drive the system to genetic differentiation, although this effect also depended on initial conditions. Genetic linkage between trait plasticity loci and dispersal loci further enhanced this strong dichotomy in evolutionary outcomes. All of these effects depended on organismal life history pattern, and in particular whether selection occurred before or after dispersal. These results can explain why adaptive trait plasticity is less common than might be expected. 相似文献
6.
Karan D Morin JP Gibert P Moreteau B Scheiner SM David JR 《Evolution; international journal of organic evolution》2000,54(3):1035-1040
Abstract.— We examined the genetic architecture of plasticity of thorax and wing length in response to temperature in Drosophila melanogaster . Reaction norms as a function of growth temperature were analyzed in 20 isofemale lines in a natural population collected from Grande Ferrade near Bordeaux (southern France) in two different years. We found evidence for a complex genetic architecture underlying the reaction norms and differences between males and females. Reaction norms were negative quadratics. Genetic correlations were moderately high between traits within environments. Among characteristic values, the magnitudes of genetic correlations varied among traits and sexes. We hypothesized that genetic correlations among environments would decrease as temperatures became more different. This expectation was upheld for only one trait, female thorax length. For males for both traits, the correlations were large for both very similar and very different temperatures. These correlations may constrain the evolution of the shape of the reaction norms. Whether the extent of independence implies specific regulatory genes or only a specific allelic regulation of trait genes can not be decided from our results. 相似文献
7.
PERSPECTIVE: GENETIC ASSIMILATION AND A POSSIBLE EVOLUTIONARY PARADOX: CAN MACROEVOLUTION SOMETIMES BE SO FAST AS TO PASS US BY? 总被引:1,自引:0,他引:1
Abstract.— The idea of genetic assimilation, that environmentally induced phenotypes may become genetically fixed and no longer require the original environmental stimulus, has had varied success through time in evolutionary biology research. Proposed by Waddington in the 1940s, it became an area of active empirical research mostly thanks to the efforts of its inventor and his collaborators. It was then attacked as of minor importance during the "hardening" of the neo-Darwinian synthesis and was relegated to a secondary role for decades. Recently, several papers have appeared, mostly independently of each other, to explore the likelihood of genetic assimilation as a biological phenomenon and its potential importance to our understanding of evolution. In this article we briefly trace the history of the concept and then discuss theoretical models that have newly employed genetic assimilation in a variety of contexts. We propose a typical scenario of evolution of genetic assimilation via an intermediate stage of phenotypic plasticity and present potential examples of the same. We also discuss a conceptual map of current and future lines of research aimed at exploring the actual relevance of genetic assimilation for evolutionary biology. 相似文献
8.
Methods for estimating the genetic component of phenotypic plasticity are presented. In the general case of clonal replicates or full-sibs raised in several environments, the heritability of plasticity can be measured as the ratio of the genotype-environment interaction variance to the total phenotypic variance. In the special case of only two environments plasticity also can be measured as the difference among environments in genotype or family means. In that case, the heritability of plasticity can be measured as either a ratio of variance components or as the slope of a parent-offspring regression. The general measure suffers because no least-square standard errors have been developed, although they can be calculated by maximum-likelihood or bootstrapping techniques. For the other two methods least-square standard errors can be calculated but require very large experiments for statistical significance to be achieved. The heritability measures are compared using data on plasticity of thorax size in response to temperature in Drosophila melanogaster. The heritability estimates are all in close agreement. Models of the evolution of phenotypic plasticity have treated it as a trait in its own right and as a cross-environment genetic correlation. Although the first approach is the one used here, neither one is preferred. 相似文献
9.
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance—maternal environmental effects—jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource‐use phenotypes (“resource polyphenism”) with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition‐dependent maternal effect and not a genetic loss of plasticity, that is “genetic assimilation,” and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution. 相似文献
10.
Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change. 相似文献
11.
The contributions of each chromosome to the traits thorax size and plasticity of thorax size as affected by temperature in Drosophila melanogaster were measured. A composite stock was created from lines previously subjected to selection on thorax size or plasticity of thorax size. A chromosome extraction was performed against a uniform background lacking genetic variation, provided by a stock of marked balancer flies. With regard to amount of plasticity, chromosome I and the balancer stock showed no plasticity, the composite stock showed the greatest plasticity, and chromosomes II and III were intermediate. Chromosome I showed significant genetic variation for thorax size at both 19° C and 25° C, but not for plasticity, while chromosome II showed significant genetic variation for plasticity, but not for thorax size. Chromosome III showed significant genetic variation for both thorax size and plasticity. We tested the predictions of three models of the genetic basis of phenotypic plasticity: overdominance, pleiotropy, and epistasis. The results support the epistasis model, in agreement with earlier work. The amount of developmental noise was correlated with phenotypic plasticity at 25° C, in agreement with earlier work. A negative correlation was found at 19° C for chromosome II, contrary to earlier work. 相似文献
12.
Frank SA 《Journal of evolutionary biology》2011,24(11):2310-2320
In classical evolutionary theory, genetic variation provides the source of heritable phenotypic variation on which natural selection acts. Against this classical view, several theories have emphasized that developmental variability and learning enhance nonheritable phenotypic variation, which in turn can accelerate evolutionary response. In this paper, I show how developmental variability alters evolutionary dynamics by smoothing the landscape that relates genotype to fitness. In a fitness landscape with multiple peaks and valleys, developmental variability can smooth the landscape to provide a directly increasing path of fitness to the highest peak. Developmental variability also allows initial survival of a genotype in response to novel or extreme environmental challenge, providing an opportunity for subsequent adaptation. This initial survival advantage arises from the way in which developmental variability smooths and broadens the fitness landscape. Ultimately, the synergism between developmental processes and genetic variation sets evolutionary rate. 相似文献
13.
Samuel M. Scheiner 《Journal of evolutionary biology》1998,11(3):303-320
Previous models of the evolution of phenotypic plasticity have, for the most part, not considered the effects of genetic architecture and spatial structure. I examine those factors with an individual-based simulation model. With regard to genetic architecture, I considered how the presence of different types of loci would affect medium-term evolutionary outcomes. The types of loci differed in how the environment determined phenotypic expression and included loci that were insensitive to the environment (non-plastic loci), sensitive in a linear fashion, and sensitive in a quadratic fashion (both plastic loci). With regard to spatial structure, I investigated the affects of migration patterns. These simulations demonstrated that two general conditions are necessary for phenotypic plasticity to be selected. (1) The environment must have a strong influence on genotypic expression. (2) The between-generation changes in the environment must be large and predictable, in the current instance because of migration in a spatially-structured (clinal) environment. Responses to selection were not simple, however. Rarely were pure strategies — genetic specialization or phenotypic plasticity — selected for. Instead, the existence of multiple types of loci led to mixed genetic outcomes. The result of this mixed outcome were individuals with reaction norms that were less steep than the optimal reaction norm (when non-plastic and linear-plastic loci were present) or individuals with curved reaction norms when the optimal reaction norms was linear (when all three types of loci were present). A pure plasticity strategy had the highest global fitness because plastic individuals would match the optimal phenotype everywhere. The reason that the metapopulation did not achieve this global fitness optimum is that local selection is stronger than global selection. Each deme is driven to a local fitness peak based on the combined, locally additive effects of the non-plastic and plastic loci. Plasticity is only selected globally, so plasticity becomes more highly favored with high migration rates. This effect was greatest in parts of the cline where the plasticity loci were not being expressed and, thus, not locally selected upon. That is, in these demes local selection was weak or absent allowing global fitness effects to predominate. 相似文献
14.
We selected on phenotypic plasticity of thorax size in response to temperature in Drosophila melanogaster using a family selection scheme. The results were compared to those of lines selected directly on thorax size. We found that the plasticity of a character does respond to selection and this response is partially independent of the response to selection on the mean of the character. One puzzling result was that a selection limit of zero plasticity was reached in the lines selected for decreased plasticity yet additive genetic variation for plasticity still existed in the lines. We tested the predictions of three models of the genetic basis of phenotypic plasticity: overdominance, pleiotropy, and epistasis. The results mostly support the epistasis model, that the plasticity of a character is determined by separate loci from those determining the mean of the character. 相似文献
15.
We present a general quantitative genetic model for the evolution of reaction norms. This model goes beyond previous models by simultaneously permitting any shaped reaction norm and allowing for the imposition of genetic constraints. Earlier models are shown to be special cases of our general model; we discuss in detail models involving just two macroenvironments, linear reaction norms, and quadratic reaction norms. The model predicts that, for the case of a temporally varying environment, a population will converge on (1) the genotype with the maximum mean geometric fitness over all environments, (2) a linear reaction norm whose slope is proportional to the covariance between the environment of development and the environment of selection, and (3) a linear reaction norm even if nonlinear reaction norms are possible. An examination of experimental studies finds some limited support for these predictions. We discuss the limitations of our model and the need for more realistic gametic models and additional data on the genetic and developmental bases of plasticity. 相似文献
16.
The ability of individual organisms to alter morphological and life-history traits in response to the conditions they experience is an example of phenotypic plasticity which is fundamental to any population's ability to deal with short-term environmental change. We currently know little about the prevalence, and evolutionary and ecological causes and consequences of variation in life history plasticity in the wild. Here we outline an analytical framework, utilizing the reaction norm concept and random regression statistical models, to assess the between-individual variation in life history plasticity that may underlie population level responses to the environment at both phenotypic and genetic levels. We discuss applications of this framework to date in wild vertebrate populations, and illustrate how natural selection and ecological constraint may alter a population's response to the environment through their effects at the individual level. Finally, we present future directions and challenges for research into individual plasticity. 相似文献
17.
Moczek AP Sultan S Foster S Ledón-Rettig C Dworkin I Nijhout HF Abouheif E Pfennig DW 《Proceedings. Biological sciences / The Royal Society》2011,278(1719):2705-2713
Explaining the origins of novel traits is central to evolutionary biology. Longstanding theory suggests that developmental plasticity, the ability of an individual to modify its development in response to environmental conditions, might facilitate the evolution of novel traits. Yet whether and how such developmental flexibility promotes innovations that persist over evolutionary time remains unclear. Here, we examine three distinct ways by which developmental plasticity can promote evolutionary innovation. First, we show how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification. Second, we posit that the developmental underpinnings of plasticity increase the degrees of freedom by which environmental and genetic factors influence ontogeny, thereby diversifying targets for evolutionary processes to act on and increasing opportunities for the construction of novel, functional and potentially adaptive phenotypes. Finally, we examine the developmental genetic architectures of environment-dependent trait expression, and highlight their specific implications for the evolutionary origin of novel traits. We critically review the empirical evidence supporting each of these processes, and propose future experiments and tests that would further illuminate the interplay between environmental factors, condition-dependent development, and the initiation and elaboration of novel phenotypes. 相似文献
18.
Guang-Qian Ren Hong-Yu Yang Jian Li K. Prabakaran Zhi-Cong Dai Xiu-Pu Wang Kun Jiang Chris B Zou Dao-Lin Du 《Plant Species Biology》2020,35(4):283-299
Phenotypic plasticity is commonly considered to contribute to the invasion success of invasive species. However, the importance of phenotypic plasticity, nitrogen (N) levels and warming to the invasion of invasive species is unclear. The effects of warming and N addition on the morphology, biomass allocation and biochemistry traits of Solidago canadensis and their plasticity were investigated by conducting a pot experiment. The results showed that the effect of N addition on biomass was improved for S. canadensis; whereas warming displayed no significant effect, their positive synergistic interact effect resulted in the overall significant increase in plant performance. The mean phenotypic plasticity indices (MPPI) of biochemistry and total parameters demonstrated a difference between operations, and the higher value was observed in N interaction with temperature treatments than N addition or warming alone. The observed MPPI indicated the biochemistry parameters > morphological parameters > allocation parameters. The MPPI of biochemistry parameters, morphological parameters and total parameters exhibited significant and positive correlations with N level and MPPI of morphological parameters was also significantly positively correlated with the fitness of S. canadensis. These results indicated that the global warming and N addition would make the invaded habitat more suitable for the growth of invasive S. canadensis, and even may effectively increase the invasion risk of S. canadensis through the enhanced phenotypic plasticity, which is a crucial factor to help species deal with the changing environment. 相似文献
19.
de Jong G 《The New phytologist》2005,166(1):101-118
Phenotypic plasticity itself evolves, as does any other quantitative trait. A very different question is whether phenotypic plasticity causes evolution or is a major evolutionary mechanism. Existing models of the evolution of phenotypic plasticity cover many of the proposals in the literature about the role of phenotypic plasticity in evolution. I will extend existing models to cover adaptation to a novel environment, the appearance of ecotypes and possible covariation between phenotypic plasticity and mean trait value of ecotypes. Genetic assimilation does not sufficiently explain details of observed patterns. Phenotypic plasticity as a major mechanism for evolution--such as, invading new niches, speciation or macroevolution--has, at present, neither empirical nor model support. 相似文献
20.
When phenotypic change occurs over time in wildlife populations, it can be difficult to determine to what degree it is because of genetic effects or phenotypic plasticity. Here, we assess phenotypic changes over time in horn length and volume of thinhorn sheep (Ovis dalli) rams from Yukon Territory, Canada. We considered 42 years of horn growth from over 50 000 growth measurements in over 8000 individuals. We found that weather explained a large proportion of the annual fluctuation in horn growth, being particularly sensitive to spring weather. Only 2.5% of variance in horn length growth could be explained by an individual effect, and thus any genetic changes over the time period could only have had a small effect on phenotypes. Our findings allow insight into the capacity for horn morphology to react to selection pressures and demonstrate the overall importance of climate in determining growth. 相似文献