首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change of Stylophora pistillata coral photosynthetic function (oxygen exchange and biomass of symbionts) under starvation and food enrichment was studied to understand the role of heterotrophy in nitrogen supplements of zooxanthellae. The starvation caused the decrease of frequency of zooxanthellae cells division in 7-10 times. The number of degraded algae cells increased in same proportion and, as a result, the density of zooxanthellae in corals decreased about two times during one-two weeks. Under starvation corals kept their photosynthetic capacity at the level of corals in situ by means of enhancing the zooxanthellae gross photosynthesis. The respiration rate of coral had tendency to increase and the dry mass of polyp tissue to decrease. Under artificial feeding which was following starvation the zooxanthellae density increased in 1.5-2 times, and particular food caused more intensive accumulation of zooxanthellae comparing to dissolved inorganic ammonium. The feeding regime did not affect dry mass of polyp tissue and chlorophyll content as well as respiration and gross productivity of the corals. The conclusion about high effectiveness of particular feeding for supplying symbiotic algae with nitrogen was made and trophic status of zooxanthellae in hospite was determined as unlimited by nitrogen.  相似文献   

2.
Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run‐off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short‐ and long‐term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short‐term exposure to high‐salinity levels. By comparison, long‐term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long‐term acclimation to high‐salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy‐based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.  相似文献   

3.
The disruption of the coral–algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral‐associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen‐fixing microbes in coral holobiont functioning and breakdown.  相似文献   

4.
Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental conditions.Subject terms: Microbial ecology, Climate-change ecology  相似文献   

5.
The coral holobiont is the community of metazoans, protists and microbes associated with scleractinian corals. Disruptions in these associations have been correlated with coral disease, but little is known about the series of events involved in the shift from mutualism to pathogenesis. To evaluate structural and functional changes in coral microbial communities, Porites compressa was exposed to four stressors: increased temperature, elevated nutrients, dissolved organic carbon loading and reduced pH. Microbial metagenomic samples were collected and pyrosequenced. Functional gene analysis demonstrated that stressors increased the abundance of microbial genes involved in virulence, stress resistance, sulfur and nitrogen metabolism, motility and chemotaxis, fatty acid and lipid utilization, and secondary metabolism. Relative changes in taxonomy also demonstrated that coral-associated microbiota ( Archaea , Bacteria , protists) shifted from a healthy-associated coral community (e.g. Cyanobacteria , Proteobacteria and the zooxanthellae Symbiodinium ) to a community (e.g. Bacteriodetes , Fusobacteria and Fungi ) of microbes often found on diseased corals. Additionally, low-abundance Vibrio spp. were found to significantly alter microbiome metabolism, suggesting that the contribution of a just a few members of a community can profoundly shift the health status of the coral holobiont.  相似文献   

6.
Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ 15N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.  相似文献   

7.
The coral holobiont is a dynamic assemblage of the coral animal, zooxanthellae, endolithic algae and fungi, Bacteria,Archaea and viruses. Zooxanthellae and some Bacteria form relatively stable and species-specific associations with corals. Other associations are less specific; coral-associated Archaea differ from those in the water column, but the same archaeal species may be found on different coral species. It has been hypothesized that the coral animal can adapt to differing ecological niches by 'switching' its microbial associates. In the case of corals and zooxanthellae, this has been termed adaptive bleaching and it has important implications for carbon cycling within the coral holobiont and ultimately the survival of coral reefs. However, the roles of other components of the coral holobiont are essentially unknown. To better understand these other coral associates, a fractionation procedure was used to separate the microbes, mitochondria and viruses from the coral animal cells and zooxanthellae. The resulting metagenomic DNA was sequenced using pyrosequencing. Fungi, Bacteria and phage were the most commonly identified organisms in the metagenome. Three of the four fungal phyla were represented, including a wide diversity of fungal genes involved in carbon and nitrogen metabolism, suggesting that the endolithic community is more important than previously appreciated. In particular, the data suggested that endolithic fungi could be converting nitrate and nitrite to ammonia, which would enable fixed nitrogen to cycle within the coral holobiont. The most prominent bacterial groups were Proteobacteria (68%), Firmicutes (10%), Cyanobacteria (7%) and Actinobacteria (6%). Functionally, the bacterial community was primarily heterotrophic and included a number of pathways for the degradation of aromatic compounds, the most abundant being the homogentisate pathway. The most abundant phage family was the ssDNA Microphage and most of the eukaryotic viruses were most closely related to those known to infect aquatic organisms. This study provides a metabolic and taxonomic snapshot of microbes associated with the reef-building coral Porites astreoides and presents a basis for understanding how coral-microbial interactions structure the holobiont and coral reefs.  相似文献   

8.
Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.  相似文献   

9.
The role of microorganisms in coral health, disease and evolution   总被引:1,自引:0,他引:1  
Coral microbiology is an emerging field, driven largely by a desire to understand, and ultimately prevent, the worldwide destruction of coral reefs. The mucus layer, skeleton and tissues of healthy corals all contain large populations of eukaryotic algae, bacteria and archaea. These microorganisms confer benefits to their host by various mechanisms, including photosynthesis, nitrogen fixation, the provision of nutrients and infection prevention. Conversely, in conditions of environmental stress, certain microorganisms cause coral bleaching and other diseases. Recent research indicates that corals can develop resistance to specific pathogens and adapt to higher environmental temperatures. To explain these findings the coral probiotic hypothesis proposes the occurrence of a dynamic relationship between symbiotic microorganisms and corals that selects for the coral holobiont that is best suited for the prevailing environmental conditions. Generalization of the coral probiotic hypothesis has led us to propose the hologenome theory of evolution.  相似文献   

10.
《农业工程》2014,34(3):165-169
Mutualistic relationship between coral polyps and their symbiotic zooxanthellae living within their tissues are the most essential features of a coral reef ecosystem. In this symbiotic system, the coral polyps provide a protected habitat, carbon dioxide and nutrients needed for photosynthesis to zooxanthellae; in turn, the symbiotic zooxanthellae provide food as products of photosynthesis to coral polyps. The Photosynthesis of zooxanthellae is therefore an important process of this symbiotic system as well as the development of the whole coral reef ecosystem. The recent application of chlorophyll fluorescence technique in the study of the zooxanthellae’s photosynthesis has greatly improved our understanding on the micro-ecology of corals and the symbiotic zooxanthellae. This paper summarizes the recent progress as the following aspects: (1) The ecological characteristics of the photosynthesis of symbiotic zooxanthellae, such as the diurnal and seasonal changes in the photochemical efficiency of the zooxanthellae, and the relationship between zooxanthellae photosynthesis and the world-wide coral bleaching. (2) The mechanism of corals acclimating to the changes of irradiance via spatial and temporal photoacclimations, including the corals’ photobiology; zooxanthella size, pigmentation, location and clade, and the relationship between light extremes and the corals’ metabolism and calcification. (3) The understanding of the response of zooxanthellae to various environmental stresses, such as long-term changes in the chlorophyll fluorescence of bleached and recovering corals; the tolerance of corals to thermal bleaching; the changes to photosystem II of symbiotic zooxanthellae after heat stress and bleaching. Due to the above findings, the chlorophyll fluorescence values of those coral species sensitive to environmental changes have been utilized as indicators of coral health as well as the status of coral reef ecosystems. In summary, the chlorophyll fluorescence technique has great potential in the understanding, monitoring, protecting and managing coral reefs.  相似文献   

11.
Sunlight and water transparency: cornerstones in coral research   总被引:2,自引:0,他引:2  
Reef-building corals throughout the world are considered endangered. The evidence is a decline in coral health and reduced coral cover. Competing hypotheses for the cause of coral loss include removal of grazers, nutrient enrichment, disease, coral bleaching, increase in temperature, and excess light/ultraviolet exposure. We suggest that light limitation as a second order effect of anthropogenic activity (e.g. sediment resuspension and nutrient enrichment) is a valid and tractable hypothesis. This experimental field and laboratory study demonstrates that corals of the Florida reefs are functioning close to the compensation point where respiration (of coral polyp plus zooxanthellae) consumes the products of photosynthesis of the zooxanthellae, with little if any remaining for growth. We extend this work into an optical nomograph that is useful for predicting coral loss and recovery. The nomograph is designed to elucidate compensation depth for waters of various transparencies.  相似文献   

12.

Global- and local-scale anthropogenic stressors have been the main drivers of coral reef decline, causing shifts in coral reef community composition and ecosystem functioning. Excess nutrient enrichment can make corals more vulnerable to ocean warming by suppressing calcification and reducing photosynthetic performance. However, in some environments, corals can exhibit higher growth rates and thermal performance in response to nutrient enrichment. In this study, we measured how chronic nutrient enrichment at low concentrations affected coral physiology, including endosymbiont and coral host response variables, and holobiont metabolic responses of Pocillopora spp. colonies in Mo'orea, French Polynesia. We experimentally enriched corals with dissolved inorganic nitrogen and phosphate for 15 months on an oligotrophic fore reef in Mo'orea. We first characterized symbiont and coral physiological traits due to enrichment and then used thermal performance curves to quantify the relationship between metabolic rates and temperature for experimentally enriched and control coral colonies. We found that endosymbiont densities and total tissue biomass were 54% and 22% higher in nutrient-enriched corals, respectively, relative to controls. Algal endosymbiont nitrogen content cell−1 was 44% lower in enriched corals relative to the control colonies. In addition, thermal performance metrics indicated that the maximal rate of performance for gross photosynthesis was 29% higher and the rate of oxygen evolution at a reference temperature (26.8 °C) for gross photosynthesis was 33% higher in enriched colonies compared to the control colonies. These differences were not attributed to symbiont community composition between corals in different treatments, as C42, a symbiont type in the Cladocopium genus, was the dominant endosymbiont type found in all corals. Together, our results show that in an oligotrophic fore reef environment, nutrient enrichment can cause changes in coral endosymbiont physiology that increase the performance of the coral holobiont.

  相似文献   

13.
The relationship between reef-building corals and light-harvesting pigments of zooxanthellae (Symbiodinium sp.) has been acknowledged for decades. The photosynthetic activity of the algal endocellular symbionts may provide up to 90% of the energy needed for the coral holobiont. This relationship limits the bathymetric distribution of coral reefs to the upper 100 m of tropical shorelines. However, even corals growing under high light intensities have to supplement the photosynthates translocated from the algae by predation on nutrient-rich zooplankton. New information has revealed how the fate of carbon acquired through photosynthesis differs from that secured by predation, whose rates are controlled by light-induced tentacular extension. The Goreau paradigm of “light-enhanced calcification” is being reevaluated, based on evidence that blue light stimulates coral calcification independently from photosynthesis rates. Furthermore, under dim light, calcification rates were stoichiometrically uncoupled from photosynthesis. The rates of photosynthesis of the zooxanthellae exhibit a clear endogenous rhythmicity maintained by light patterns. This daily pattern is concomitant with a periodicity of all the antioxidant protective mechanisms that wax and wane to meet the concomitant fluctuation in oxygen evolution. The phases of the moon are involved in the triggering of coral reproduction and control the spectacular annual mass-spawning events taking place in several reefs. The intensity and directionality of the underwater light field affect the architecture of coral colonies, leading to an optimization of the exposure of the zooxanthellae to light. We present a summary of major gaps in our understanding of the relationship between light and corals as a roadmap for future research.  相似文献   

14.
Heterotrophy in Tropical Scleractinian Corals   总被引:1,自引:0,他引:1  
The dual character of corals, that they are both auto- and heterotrophs, was recognized early in the twentieth Century. It is generally accepted that the symbiotic association between corals and their endosymbiotic algae (called zooxanthellae) is fundamental to the development of coral reefs in oligotrophic tropical oceans because zooxanthellae transfer the major part of their photosynthates to the coral host (autotrophic nutrition). However, numerous studies have confirmed that many species of corals are also active heterotrophs, ingesting organisms ranging from bacteria to mesozooplankton. Heterotrophy accounts for between 0 and 66% of the fixed carbon incorporated into coral skeletons and can meet from 15 to 35% of daily metabolic requirements in healthy corals and up to 100% in bleached corals. Apart from this carbon input, feeding is likely to be important to most scleractinian corals, since nitrogen, phosphorus, and other nutrients that cannot be supplied from photosynthesis by the coral's symbiotic algae must come from zooplankton capture, particulate matter or dissolved compounds. A recent study showed that during bleaching events some coral species, by increasing their feeding rates, are able to maintain and restore energy reserves.
This review assesses the importance and effects of heterotrophy in tropical scleractinian corals. We first provide background information on the different food sources (from dissolved organic matter to meso- and macrozooplankton). We then consider the nutritional inputs of feeding. Finally, we review feeding effects on the different physiological parameters of corals (tissue composition, photosynthesis and skeletal growth).  相似文献   

15.
Titlyanov  E. A. 《Hydrobiologia》1991,216(1):383-387
Light adaptation and photosynthetic productivity were studied in common reef-building corals on islands of the Indian Ocean and the South China Sea. When light is attenuated, both in shade and at depth, adaptations by zooxanthellae permit maximal absorption and utilization of light. Better utilization of incident light in shade-dwelling and deep-water coral forms is reflected by higher values of gross photosynthesis on the plateau and linear portion of the photosynthesis-irradiance curve. It was shown that outer branches of reef-building corals are autotrophic in a major part of their light-range distribution and have a high and stable level of primary production.  相似文献   

16.
Functional traits define species by their ecological role in the ecosystem. Animals themselves are host–microbe ecosystems (holobionts), and the application of ecophysiological approaches can help to understand their functioning. In hard coral holobionts, communities of dinitrogen (N2)-fixing prokaryotes (diazotrophs) may contribute a functional trait by providing bioavailable nitrogen (N) that could sustain coral productivity under oligotrophic conditions. This study quantified N2 fixation by diazotrophs associated with four genera of hermatypic corals on a northern Red Sea fringing reef exposed to high seasonality. We found N2 fixation activity to be 5- to 10-fold higher in summer, when inorganic nutrient concentrations were lowest and water temperature and light availability highest. Concurrently, coral gross primary productivity remained stable despite lower Symbiodinium densities and tissue chlorophyll a contents. In contrast, chlorophyll a content per Symbiodinium cell increased from spring to summer, suggesting that algal cells overcame limitation of N, an essential element for chlorophyll synthesis. In fact, N2 fixation was positively correlated with coral productivity in summer, when its contribution was estimated to meet 11% of the Symbiodinium N requirements. These results provide evidence of an important functional role of diazotrophs in sustaining coral productivity when alternative external N sources are scarce.  相似文献   

17.
Microbial diseases of corals and global warming   总被引:8,自引:0,他引:8  
Coral bleaching and other diseases of corals have increased dramatically during the last few decades. As outbreaks of these diseases are highly correlated with increased sea-water temperature, one of the consequences of global warming will probably be mass destruction of coral reefs. The causative agent(s) of a few of these diseases have been reported: bleaching of Oculina patagonica by Vibrio shiloi; black band disease by a microbial consortium; sea-fan disease (aspergillosis) by Aspergillus sydowii; and coral white plague possibly by Sphingomonas sp. In addition, we have recently discovered that Vibrio coralyticus is the aetiological agent for bleaching the coral Pocillopora damicornis in the Red Sea. In the case of coral bleaching by V. shiloi, the major effect of increasing temperature is the expression of virulence genes by the pathogen. At high summer sea-water temperatures, V. shiloi produces an adhesin that allows it to adhere to a beta-galactoside-containing receptor in the coral mucus, penetrate into the coral epidermis, multiply intracellularly, differentiate into a viable-but-not-culturable (VBNC) state and produce toxins that inhibit photosynthesis and lyse the symbiotic zooxanthellae. In black band disease, sulphide is produced at the coral-microbial biofilm interface, which is probably responsible for tissue death. Reports of newly emerging coral diseases and the lack of epidemiological and biochemical information on the known diseases indicate that this will become a fertile area of research in the interface between microbial ecology and infectious disease.  相似文献   

18.
As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat‐resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on >30 year satellite‐derived sea surface temperature observations (1985–2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching‐prone regions in other data‐limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.  相似文献   

19.
Reef-building corals may be seen as holobiont organisms, presenting diverse associated microbial communities. Best known is the symbiotic relationship with zooxanthellae, but Archaea, Bacteria, fungi, viruses, and algal plastids are also abundant. Until now, there is little information concerning microbial communities associated with Brazilian corals. The present study aims to describe the diversity of Archaea, Bacteria, and eukaryotic algal plastid communities associated with two sympatric species, Siderastrea stellata and Mussismilia hispida, from Southeastern Brazil, using 16S rRNA gene libraries. Since corals present a high number of other associated invertebrates, coral barcoding (COI) was performed to confirm the exclusive occurrence of coral DNA in our samples. Our analysis yielded 354 distinct microbial OTUs, represented mainly by novel phylotypes. Richness (Chao1 and ACE) and diversity (H') estimations of the microbial communities associated with both species were high and comparable to other studies. Rarefaction analyses showed that microbial diversity of S. stellata is higher than that of M. hispida. Libshuff comparative analyses showed that the highest microbial community similarity between the two coral species occurred in the bacterial libraries, while archaeal and plastidial communities were significantly different. Crenarchaeota dominated archaeal communities, while Proteobacteria was the most abundant bacterial phylum, dominated by alpha-Proteobacteria. Plastids were also represented by novel phylotypes and did not match with any 16S rRNA sequences of Cyanobacteria and zooxanthellae from GenBank. Our data improves the pool of available information on Brazilian coral microbes and shows corals as sources of diverse prokaryotic and picoeukaryotic communities.  相似文献   

20.
Reef-building corals are comprised of close associations between the coral animal, symbiotic zooxanthellae, and a diversity of associated microbes (including Bacteria, Archaea and Fungi). Together, these comprise the coral holobiont – a paradigm that emphasizes the potential contributions of each component to the overall function and health of the coral. Little is known about the ecology of the coral-associated microbial community and its hypothesized role in coral health. We explored bacteria–bacteria antagonism among 67 bacterial isolates from the scleractinian coral Montastrea annularis at two temperatures using Burkholder agar diffusion assays. A majority of isolates exhibited inhibitory activity (69.6% of isolates at 25°C, 52.2% at 31°C), with members of the γ-proteobacteria ( Vibrionales and Alteromonadales ) being especially antagonistic. Elevated temperatures generally reduced levels of antagonism, although the effects were complex. Several potential pathogens were observed in the microbial community of apparently healthy corals, and 11.6% of isolates were able to inhibit the growth of the coral pathogen Vibrio shiloi at 25°C. Overall, this study demonstrates that antagonism could be a structuring force in coral-associated microbial communities and may contribute to pathogenesis as well as disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号