首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of fences in conservation can be controversial, as artificial barriers constrain natural behavior and ecological dynamics. However, in the case of large predators inhabiting protected areas within a hostile human‐dominated landscape, predators may remain at low densities if they face high mortality upon leaving the reserve. In turn, this may compromise the potential for density‐dependent effects such as top‐down regulation of prey species abundance. We simulate the hypothetical reintroduction of gray wolves (Canis lupus) to reserves in their former range (Scottish Highlands), with the objectives of identifying parameters that allow a viable wolf population and the potential for direct top‐down forcing of red deer (Cervus elaphus) densities. We examine the extent to which the number of dispersing wolves leaving the protected area influences whether these objectives are achieved. Our simulations confirm that source‐sink population dynamics can result in a self‐perpetuating wolf population, but one that never achieves densities needed for strong top‐down forcing. When wolf density is weakly controlled by intraspecific competition, strong top‐down forcing occurs when 20% of dispersing wolves or less leave the population. When 20–35% of dispersing wolves leave, the strength of top‐down forcing is highly variable. The wolf population remained viable when 35–60% of dispersing wolves left, but then did not exert strong top‐down forcing. Wolves were vulnerable to extinction at greater than 60% disperser loss. Despite their negative connotations, fences (including semi‐permeable ones) could increase the potential for interspecific density‐dependent processes in some cases, thereby facilitating trophic rewilding.  相似文献   

2.
3.
Animal host–microbe interactions are a relevant concern for wildlife conservation, particularly regarding generalist pathogens, where domestic host species can play a role in the transmission of infectious agents, such as viruses, to wild animals. Knowledge on viral circulation in wild host species is still scarce and can be improved by the recent advent of modern molecular approaches. We aimed to characterize the fecal virome and identify viruses of potential conservation relevance of diarrheic free‐ranging wolves and sympatric domestic dogs from Central Portugal, where a small and threatened wolf population persists in a highly anthropogenically modified landscape. Using viral metagenomics, we screened diarrheic stools collected from wolves (n = 8), feral dogs (n = 4), and pet dogs (n = 6), all collected within wolf range. We detected novel highly divergent viruses as well as known viral pathogens with established effects on population dynamics, including canine distemper virus, a novel bocavirus, and canine minute virus. Furthermore, we performed a 4‐year survey for the six wolf packs comprising this endangered wolf population, screening 93 fecal samples from 36 genetically identified wolves for canine distemper virus and the novel bocavirus, previously identified using our metagenomics approach. Our novel approach using metagenomics for viral screening in noninvasive samples of wolves and dogs has profound implications on the knowledge of both virology and wildlife diseases, establishing a complementary tool to traditional screening methods for the conservation of threatened species.  相似文献   

4.
We characterized 59 canine single nucleotide polymorphisms (SNPs) in the endangered Italian wolf (Canis lupus) population, which were discovered by resequencing sequence‐tagged‐site (STS) DNA sequences that are known to contain SNPs in domestic dogs. Dog SNPs were usually found also in wolves. Additional SNPs unique in dogs or wolves were discovered, which is important for detecting hybrids between dogs and wolves. We developed new primer sets and analysed 15 SNPs by Pyrosequencing. The characterized SNPs will provide an important addition to the genetic markers that are currently available for studying wild populations of canids.  相似文献   

5.
Abstract: After roughly a 60-year absence, wolves (Canis lupus) immigrated (1979) and were reintroduced (1995-1996) into the northern Rocky Mountains (NRM), USA, where wolves are protected under the Endangered Species Act. The wolf recovery goal is to restore an equitably distributed metapopulation of ≥30 breeding pairs and 300 wolves in Montana, Idaho, and Wyoming, while minimizing damage to livestock; ultimately, the objective is to establish state-managed conservation programs for wolf populations in NRM. Previously, wolves were eradicated from the NRM because of excessive human killing. We used Andersen–Gill hazard models to assess biological, habitat, and anthropogenic factors contributing to current wolf mortality risk and whether federal protection was adequate to provide acceptably low hazards. We radiocollared 711 wolves in Idaho, Montana, and Wyoming (e.g., NRM region of the United States) from 1982 to 2004 and recorded 363 mortalities. Overall, annual survival rate of wolves in the recovery areas was 0.750 (95% CI = 0.728-0.772), which is generally considered adequate for wolf population sustainability and thereby allowed the NRM wolf population to increase. Contrary to our prediction, wolf mortality risk was higher in the northwest Montana (NWMT) recovery area, likely due to less abundant public land being secure wolf habitat compared to other recovery areas. In contrast, lower hazards in the Greater Yellowstone Area (GYA) and central Idaho (CID) likely were due to larger core areas that offered stronger wolf protection. We also found that wolves collared for damage management purposes (targeted sample) had substantially lower survival than those collared for monitoring purposes (representative sample) because most mortality was due to human factors (e.g., illegal take, control). This difference in survival underscores the importance of human-caused mortality in this recovering NRM population. Other factors contributing to increased mortality risk were pup and yearling age class, or dispersing status, which was related to younger age cohorts. When we included habitat variables in our analysis, we found that wolves having abundant agricultural and private land as well as livestock in their territory had higher mortality risk. Wolf survival was higher in areas with increased wolf density, implying that secure core habitat, particularly in GYA and CID, is important for wolf protection. We failed to detect changes in wolf hazards according to either gender or season. Maintaining wolves in NWMT will require greater attention to human harvest, conflict resolution, and illegal mortality than in either CID or GYA; however, if human access increases in the future in either of the latter 2 areas hazards to wolves also may increase. Indeed, because overall suitable habitat is more fragmented and the NRM has higher human access than many places where wolves roam freely and are subject to harvest (e.g., Canada and AK), monitoring of wolf vital rates, along with concomitant conservation and management strategies directed at wolves, their habitat, and humans, will be important for ensuring long-term viability of wolves in the region.  相似文献   

6.
Abstract We investigated the influence of habitat use on risk of death from hunting and trapping of 55 radiocollared gray wolves (Canis lupus) from an exploited insular population in Southeast Alaska, USA. We compared mortality rates for resident and nonresident wolves and used Cox proportional hazards regression to relate habitat composition within 100-m circular buffers around radiolocations to risk of death of resident and nonresident wolves. In addition, we included covariates representing distances to roads, logged stands, and lakes and streams in those analyses. We also compiled harvest data from 31 harvest units within the study area to compare densities of roads and distances from human settlements with rates of harvest. During our study 39 wolves died, of which 18 were harvested legally, 16 were killed illegally, and 5 died from natural causes. Legal and illegal harvest accounted for >87% of the mortality of radiocollared resident and nonresident wolves. Mean annual survival was 0.54 (SE = 0.17) for all wolves. Annual survival was 0.65 (SE = 0.17) for resident wolves and 0.34 (SE = 0.17) for nonresidents. Very few (19%) nonresident wolves survived to colonize vacant territories or join existing wolf packs. Roads, muskegs, and distances from lakes and streams were covariates positively associated with death of resident wolves. Clear-cuts were positively associated with risk of death of nonresident wolves. Rate of harvest increased with density of roads; however, road densities >0.9 km/km2 had little additional effect on harvest rates. Harvest rates decreased with ocean distances from nearest towns or settlements. Roads clearly increased risk of death for wolves from hunting and trapping and contributed to unsustainable rates of harvest. Wildlife managers should consider effects of roads and other habitat features on harvest of wolves when developing harvest recommendations. They should expect substantial illegal harvest where wolf habitat is accessible to humans. Moreover, high rates of mortality of nonresident wolves exposed to legal and illegal harvest may reduce or delay successful dispersal, potentially affecting linkages between small disjunct wolf populations or population segments. We conclude that a combination of conservative harvest regulations and large roadless reserves likely are the most effective measures for conserving wolves where risks from human-caused mortality are high.  相似文献   

7.
In a predator–prey system, prey species may adapt to the presence of predators with behavioral changes such as increased vigilance, shifting habitats, or changes in their mobility. In North America, moose (Alces alces) have shown behavioral adaptations to presence of predators, but such antipredator behavioral responses have not yet been found in Scandinavian moose in response to the recolonization of wolves (Canis lupus). We studied travel speed and direction of movement of GPS‐collared female moose (n = 26) in relation to spatiotemporal differences in wolf predation risk, reproductive status, and time of year. Travel speed was highest during the calving (May–July) and postcalving (August–October) seasons and was lower for females with calves than females without calves. Similarly, time of year and reproductive status affected the direction of movement, as more concentrated movement was observed for females with calves at heel, during the calving season. We did not find support for that wolf predation risk was an important factor affecting moose travel speed or direction of movement. Likely causal factors for the weak effect of wolf predation risk on mobility of moose include high moose‐to‐wolf ratio and intensive hunter harvest of the moose population during the past century.  相似文献   

8.
Ecological theory predicts that the diffuse risk cues generated by wide‐ranging, active predators should induce prey behavioural responses but not major, population‐ or community‐level consequences. We evaluated the non‐consumptive effects (NCEs) of an active predator, the grey wolf (Canis lupus), by simultaneously tracking wolves and the behaviour, body fat, and pregnancy of elk (Cervus elaphus), their primary prey in the Greater Yellowstone Ecosystem. When wolves approached within 1 km, elk increased their rates of movement, displacement and vigilance. Even in high‐risk areas, however, these encounters occurred only once every 9 days. Ultimately, despite 20‐fold variation in the frequency of encounters between wolves and individual elk, the risk of predation was not associated with elk body fat or pregnancy. Our findings suggest that the ecological consequences of actively hunting large carnivores, such as the wolf, are more likely transmitted by consumptive effects on prey survival than NCEs on prey behaviour.  相似文献   

9.
ABSTRACT Traditional methods of monitoring gray wolves (Canis lupus) are expensive and invasive and require extensive efforts to capture individual animals. Noninvasive genetic sampling (NGS) is an alternative method that can provide data to answer management questions and complement already-existing methods. In a 2-year study, we tested this approach for Idaho gray wolves in areas of known high and low wolf density. To focus sampling efforts across a large study area and increase our chances of detecting reproductive packs, we visited 964 areas with landscape characteristics similar to known wolf rendezvous sites. We collected scat or hair samples from 20% of sites and identified 122 wolves, using 8–9 microsatellite loci. We used the minimum count of wolves to accurately detect known differences in wolf density. Maximum likelihood and Bayesian single-session population estimators performed similarly and accurately estimated the population size, compared with a radiotelemetry population estimate, in both years, and an average of 1.7 captures per individual were necessary for achieving accurate population estimates. Subsampling scenarios revealed that both scat and hair samples were important for achieving accurate population estimates, but visiting 75% and 50% of the sites still gave reasonable estimates and reduced costs. Our research provides managers with an efficient and accurate method for monitoring high-density and low-density wolf populations in remote areas.  相似文献   

10.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

11.
Wolves (Canis lupus) have recently expanded their distribution range into western and southern Finland, which has not hosted breeding wolves for over 100 years. This has raised concerns and public debate over wolf-livestock conflicts. Between 1998 and 2004 there were 45 wolf attacks on sheep on 34 farms. To assess the risk wolves may pose to sheep husbandry, we used data on depredation, sheep management, landscape structure and moose and wolf populations from continental Finland outside the area of reindeer husbandry to build models of the factors that may predispose sheep farms to wolf depredation. Our results provided evidence that sheep farms with the highest risk of wolf depredation were those located in regions where wolves were abundant. These farms were usually located close to the Russian border where the landscape is a mosaic of forest, wetlands and clear cut areas. These regions are sparsely populated by humans and farms are located far from each other. Finally, we generated probability maps based on generalised additive modelling to predict the risk of wolf predation on livestock in farms of southern Finland.  相似文献   

12.
Since the first sporadic occurrences of grey wolves (Canis lupus) west of the Polish border in 1996, wolves have shown a rapid population recovery in Germany. Wolves are known to avoid people and wolf attacks on humans are very rare worldwide. However, the subjectively perceived threat is considerable, especially as food-conditioned habituation to humans occurs sporadically. Lower Saxony (Germany) has an exceedingly higher human population density than most other regions with territorial wolves; thus, the potential for human–wolf conflicts is higher. Using hunters’ wildlife survey data from 455 municipalities and two years (2014–2015) and data from the official wolf monitoring (557 confirmed wolf presences and 500 background points) collected between 2012–2015, grey wolf habitat selection was modelled using generalized additive models with respect to human population density, road density, forest cover and roe deer density. Moreover, we tested whether habitat use changed in response to human population and road density between 2012/2013 and 2014/2015.Wolves showed a preference for areas of low road density. Human population density was less important as a covariate in the model of the survey data. Areas with higher prey abundance (5–10 roe deer/km2) and areas with >20% forest cover were preferred wolf habitats. Wolves were mostly restricted to areas with the lowest road and human population densities. However, between the two time periods, avoidance of human density decreased significantly.Recolonization of Germany is still in its early stages and it is unclear where this process will halt. To-date authorities mainly concentrate on monitoring measures. However, to avoid conflict, recolonization will require more stringent management of wolf populations and an improved information strategy for rural populations.  相似文献   

13.
Variation in group composition and environment can affect helping behavior in cooperative breeders. Understanding of how group size, traits of individuals within groups, food abundance, and predation risk simultaneously influence helping behavior is limited. We evaluated pup‐guarding behavior in gray wolves (Canis lupus) to assess how differences in individuals, groups, and environment affect helping behavior. We used data from 92 GPS‐collared wolves in North America (2001–2012) to estimate individual pup‐guarding rates. Individuals in groups with low helper‐to‐pup ratios spent more time guarding young than those in groups with more helpers, an indication of load‐lightening. Female helpers guarded more than male helpers, but this relationship weakened as pups grew. Subset analyses including data on helper age and wolf and prey density showed such factors did not significantly influence pup‐guarding rates. We show that characteristics of individuals and groups have strong influences on pup‐guarding behavior in gray wolves, but environmental factors such as food abundance and predation risk from conspecifics were not influential.  相似文献   

14.
Recovering populations of carnivores suffering Allee effects risk extinction because positive population growth requires a minimum number of cooperating individuals. Conservationists seldom consider these issues in planning for carnivore recovery because of data limitations, but ignoring Allee effects could lead to overly optimistic predictions for growth and underestimates of extinction risk. We used Bayesian splines to document a demographic Allee effect in the time series of gray wolf (Canis lupus) population counts (1980–2011) in the southern Lake Superior region (SLS, Wisconsin and the upper peninsula of Michigan, USA) in each of four measures of population growth. We estimated that the population crossed the Allee threshold at roughly 20 wolves in four to five packs. Maximum per-capita population growth occurred in the mid-1990s when there were approximately 135 wolves in the SLS population. To infer mechanisms behind the demographic Allee effect, we evaluated a potential component Allee effect using an individual-based spatially explicit model for gray wolves in the SLS region. Our simulations varied the perception neighborhoods for mate-finding and the mean dispersal distances of wolves. Simulation of wolves with long-distance dispersals and reduced perception neighborhoods were most likely to go extinct or experience Allee effects. These phenomena likely restricted population growth in early years of SLS wolf population recovery.  相似文献   

15.
Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator–prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe‐haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose (Alces alces) density and wolf (Canis lupus) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator–prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.  相似文献   

16.
  • 1 The wolf Canis lupus, the most widespread of the four species of large carnivores in Europe, after centuries of population decline and eradication, is now recovering in many countries. Wolves contribute to regulating prey–predator dynamics and interact with human activities, mainly livestock farming and ungulate hunting. Although wolves are protected in most European countries, illegal or incidental killing is widespread.
  • 2 Wolf populations do not show any apparent phylogeographic structuring worldwide. Molecular and morphological studies of historical samples showed evidence of wolf ecomorph extinctions, coinciding with the great Pleistocene faunal turnover.
  • 3 Extant populations show recurrent long‐range dispersal during cycles of expansion and recolonization. Demographically stable populations, in contrast, seem to be characterized by very limited gene flow.
  • 4 Despite the potential for dispersal and ecological flexibility, landscape genetic approaches have demonstrated the existence of genetically distinct wolf populations, which originated through habitat and prey specializations.
  • 5 Small isolated wolf populations may suffer from inbreeding depression, although selection for heterozygotes and the rescue effect can foster rapid population recovery. Population structure and dynamics is efficiently monitored by non‐invasive genetic methods, which are also useful to identify wolf × dogCanis lupus familiaris hybridization.
  • 6 Despite technical advances and a better knowledge of wolf biology, wolf conservation is largely dependent on humans, and on the solution of conflicts with stakeholders.
  相似文献   

17.
Large carnivores can either directly influence ungulate populations or indirectly affect their behaviour. Knowledge from European systems, in contrast to North American systems, on how this might lead to cascading effects on lower trophic levels is virtually absent. We studied whether wolves Canis lupus via density‐mediated and behaviorally‐mediated effects on their ungulate prey species influence patterns of browsing and tree regeneration inside the Bia?owie?a National Park, Poland. Browsing intensity of tree saplings (height class < 150 cm), irrespective of tree species or forest type, was lower inside a wolf core area (50.5%) where predator presence is highest, than in the remainder of the wolf pack’s home range (58.3%). Additionally, browsing intensity was reduced when the amount of coarse woody debris (CWD), which can act as a ?ungulate escape impediment?, increased (within 5‐m radius) inside the wolf core area. No relationship existed outside the core area. As a result, the proportion of trees growing out of herbivore control increased more strongly with increasing amount of CWD inside compared to outside the wolf core area. This suggests that next to direct effects of wolves on ungulate density caused by a higher predation pressure inside the core area, risk effects are important and are enhanced by habitat characteristics. These results indicate that behaviorally‐mediated effects of predators on prey can become more important than density‐mediated effects in affecting lower trophic levels. This is the first study we are aware of, that shows CWD can create fine‐scale risk effects on ungulates with the potential for cascading effects of large predators on patterns of tree regeneration for a European forest system. This knowledge broadens the discussion on how the impact of large predators on ecosystem functioning depends on the physical landscape, by illustrating these effects for a system which largely contrasts in this respect to the North American systems.  相似文献   

18.
Resolving the taxonomy and historic ranges of species are essential to recovery plans for species at risk and conservation programs that aim to restore extirpated populations. In eastern North America, planning for wolf population restoration is complicated by the disputed historic distributions of two wolf species: the Old World-evolved gray wolf (Canis lupus) and the New World-evolved eastern wolf (C. lycaon). We used genetic and morphometric data from 4- to 500-year-old Canis samples excavated in London, Ontario, Canada to help clarify the historic range of these two wolf species in the eastern temperate forests of North America. We isolated DNA and sequenced the mitochondrial control region and found that none of the samples were of gray wolf origin. Two of the DNA sequences corresponded to those found in present day coyotes (C. latrans), but morphometric comparisons show an eastern wolf, not coyote, origin. The remaining two sequences matched ancient domestic dog haplotypes. These results suggest that the New World-evolved eastern wolf, not the gray wolf, occupied this region prior to the arrival of European settlers, although eastern-gray wolf hybrids cannot be ruled out. Furthermore, our data support the idea of a shared common ancestry between eastern wolves and western coyotes, and that the distribution of gray wolves at this time probably did not include the eastern temperate forests of North America.  相似文献   

19.
Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive‐based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random‐walk models to GPS movement data of six wolves (Canis lupus; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti‐predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable “time since last visit,” which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time‐dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time‐dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., “when” and “where”) to make movement decisions. The approach allows us to better understand cognition‐based movement in relation to dynamic environments and resources.  相似文献   

20.
There is limited research on the influence of Pacific‐based climate in large herbivore populations. Additionally, much of our understanding on the effect of large‐scale climate on ungulate population dynamics has occurred on forage‐limited rather than predator‐limited populations. We compared the influence of the Pacific Decadal Oscillation (PDO), North Pacific Index, and local weather on recruitment in a predator‐limited mountain‐dwelling caribou Rangifer tarandus caribou population in the Yukon Territory, Canada, across a range of wolf Canis lupus densities. A large‐scale wolf removal program allowed us to examine the role of Pacific climate and weather when wolves were reduced to ~15% of their pre‐removal levels. Recruitment was best explained by the interaction of wolf density and April‐PDO, with wolf density explaining the most deviance. Predicted recruitment during good springs was 0.45 (SE = 0.04) during wolf removal and 0.29 (SE = 0.03) with no wolf removal. During poor springs (low PDO, increased snow depth) predicted recruitment was 0.55 (SE = 0.10) during wolf removal and 0.12 (SE = 0.03) with no wolf removal. With non‐altered wolf densities, there was a positive relationship between April‐PDO and recruitment due to reduced snow depth at calving, allowing parturient females to disperse up in elevation away from predators. When wolf densities were substantially reduced there was a slight negative relationship between April‐PDO and recruitment, possibly due to a more rapid vegetation green‐up reducing the temporal availability of highly nutritious forage necessary for lactation and subsequent calf growth. Attempts to find general relationships between climate and ungulate population dynamics have proven difficult due to different ecological mechanisms by which climate affects individuals across populations. Temporally varying factors, such as predator density, may also play an important role in uncovering the mechanistic relationship between climate and population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号