首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning‐caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera‐based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3‐year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground‐based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground‐based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning‐damaged temperate trees were never observed in this study. Given the prevalence of communications towers worldwide, the lightning detection system described here could be implemented in diverse forest types. Data from multiple systems would provide an outstanding opportunity for comparative research on the ecological effects of lightning. Such comparative data are increasingly important given expected increases in lightning frequency with climatic change.  相似文献   

2.
Aim Insect assemblages associated with lianas in tropical forests are poorly studied compared with those associated with trees. The importance of lianas for the maintenance of local species richness of insect herbivores in tropical forests is therefore poorly understood. With this in mind, a comparative study of the relative importance of trees and lianas as hosts for phytophagous beetles was carried out. Location The study area was located in the canopy of a dry tropical forest in Parque Natural Metropolitano, Panama province, Republic of Panama. Methods A crane system was utilized to access the canopy. The number of species and host specialization of adult phytophagous beetles associated with twenty‐six liana species of ten different families, and twenty‐four tree species of twelve different families were compared. Results A total of 2561 host associations of 697 species of beetles were determined (1339 for trees and 1222 for lianas). On average 55.8 ± 6.8 beetle species were found to be associated with each tree species while the comparable number for lianas was 47.0 ± 6.1. The pooled numbers of phytophagous beetle species associated with trees and lianas, respectively, were not significantly different. However, there were significantly more species feeding on green plant parts on lianas than on trees, and there were significantly more wood eaters on trees than on lianas. Phytophagous beetles associated with lianas were significantly more specialized than the tree associates due to a higher degree of specialization among the species feeding on green plant parts of lianas. Wood eaters and flower visitors showed no differences in host specialization on different growth forms. Main conclusion The present study shows that lianas are at least as important as trees for the maintenance of local species diversity of phytophagous beetles at this site. The mechanisms that drive the patterns can only be hypothesized. Plant architecture, size, and length of growing season are probably involved. Further studies, should include measurements of plant traits to elucidate experimentally what mechanisms that drive the patterns. Additional insight would come from similar studies in other forest types, and also studies of other major taxonomic groups of arthropod herbivores.  相似文献   

3.
4.
Annual early fire, selective tree cutting and exclusion of grazing are currently used as management tools in the Sudanian savanna of Burkina Faso although their long-term effects on seedling recruitment are poorly documented. A factorial experiment involving fire, grazing and cutting, each with two levels, was established in 1992 to study the effects of these management regimes and their interactions on the regeneration of woody species, and examine whether their effects varied temporally. Species richness, density and the morphology of seedlings were assessed in 1997 and 2002, and their relative changes were determined. The change in species richness of multi-stemmed individuals was significantly higher ( P  = 0.018) on plots that received fire × cutting treatment than the control plots. Significantly more species with single-stem were found on unburnt than on burnt plots ( P  < 0.001). Grazing tended to reduce the change in total density while fire ( P  < 0.001) and grazing ( P  = 0.029) significantly reduced the change in density of single-stemmed individuals. Selective cutting did not affect the total seedling density, but tended to reduce the change in single-stemmed seedling density. Principal component analysis revealed species-specific responses to treatments, particularly the relatively high abundance of lianas compared with other species.  相似文献   

5.
In tropical forest, landscape fragmentation and the consequent degradation of disturbed forests increase the incidence of light and dry hot winds, causing a disturbance on natural regeneration. Under these conditions, lianas (woody vines) development is stimulated instead of other species, which are more suited to mature forest and under less influence of the edge effect. For this, lianas colonization is an important variable for assessing the disturbance level of a forest. In this context, it becomes important to understand the nature of the competitive relationships between hyper-abundant lianas and ring growth of the host trees. Here, we selected trees with occupation or absence of lianas from two tropical species – Pinus caribaea var. hondurensis (Caribbean pine) and Tectona grandis (teak) – localized in a semideciduous forest fragment in southeastern Brazil, aiming to compare growth, climatic response, anatomy (vessels and intra-annual density fluctuations), wood density and carbon, by tree-ring analysis. The results showed that the lianas caused a change in tree-ring anatomy of host trees in last 10 years, mainly. We observed that trees occupied by lianas had a decrease the radial growth and carbon in the two species, an increase of the vessels size in teak and a decrease of the IADF frequency in Caribbean pine. In teak, the climate-tree relationship indicated that trees with lianas had lower response to rainfall and higher response to temperature in the summer (rainy and hottest period); in Caribbean pine, we observed that trees with lianas had a 2-month delay in the radial growth response to rainfall in the dry season. In the teak group, we observed that host trees had higher wood density values than liana-free tree in the outer rings, and the opposite was showed for pine. These findings show that tree-ring growth of host trees are a strong bioindicator of forest disturbance caused by aggressive colonization of lianas. We believe that these methods are applicable to future studies relating to the effects of habitat fragmentation and forest degradation on biodiversity and ecosystem services, particularly in the context of global climate change.  相似文献   

6.
Abstract  Larvae of the Queensland fruit fly, Bactrocera tryoni , pupate in the soil, but the influence of soil variables on B. tryoni pupal mortality is not known. For other tropical tephritid species, soil moisture has been identified as a major pupal mortality factor. In the laboratory, we tested the effects of soil moisture and soil type on pupal survival through a factorial experiment which used three soil types (loamy sand, loam, sandy clay) and seven soil moisture levels (0%, 10%, 25%, 50%, 75%, 90% and 100%). Minor, but significant, differences in pupal mortality were observed between the soil types, but the most significant factor affecting pupae was extremes of soil moisture. Eighty-five percent pupal mortality occurred at 0% soil moisture and 30% mortality at 100% soil moisture: very low levels of mortality occurred at all intermediate levels. We detected a significant interaction between soil type and moisture level but cannot explain it. In a follow-up experiment, we demonstrated that prepupal wandering larvae of B. tryoni could discriminate between different moisture levels, with significantly greater pupation in loam soil at 75% soil moisture than at either 0% or 100% soil moisture. Results are used to modify a pupal mortality/soil moisture equation used in a recently published DYMEX model of B. tryoni population dynamics .  相似文献   

7.
闫明  陈艳梅  闫静  奚为民 《生态学报》2024,44(6):2420-2436
基于计数模型方法,同时考虑样地的随机效应,构建林分水平死亡模型,探究影响树木死亡的因素,以期为森林资源的监测与管理提供参考依据。以美国德州东部森林连续清查的样地数据为数据源,按4∶1的比例将其进行随机抽样,划分为训练集和验证集数据,将立地因子、林分因子和气候因子作为模型的自变量,林木死亡株数则作为模型的因变量,运用计数模型和混合效应模型方法进行模型的构建,并分析影响林木死亡株数的因子。使用赤池信息准则(AIC)、贝叶斯信息准则(BIC)和-2倍对数似然函数值(-2logL) 3种模型评价指标评估各模型间的拟合效果;采用平均绝对误差(MAE)和均方根误差(RMSE) 2种评价指标评估其预测效果,以便筛选出最佳的林分水平死亡模型。结果表明:立地因子方面,林木死亡株数与海拔(P<0.01)呈显著的负效应,与坡度(P<0.05)呈显著的正效应,说明林木死亡株数随海拔的升高而减少,随坡度的增加而增多;林分因子方面,林木死亡株数与林分年龄(P<0.001)和树木基面积(P<0.001)呈显著的正效应,与林分平方平均胸径(P<0.001)和林分密度(P<0.05)...  相似文献   

8.
9.
Most studies have concluded that liana diversity and structure increase with disturbance. However, a contradictory pattern has emerged recently calling for more research in the area. Liana diversity and structure were investigated in three forest types that differ in disturbance intensity (nondisturbed, moderately disturbed and heavily disturbed forest: NDF, MDF and HDF, respectively) in the Atewa Range Forest Reserve, Ghana. In each forest type, 10 square plots of 0.25 ha were demarcated. Lianas with diameter ≥1 cm located on trees with diameter ≥10 cm were enumerated. A total of 429 individuals representing 40 species, 29 genera and seventeen families were identified in the study. Shannon diversity and species richness of lianas were significantly lower in the HDF (P < 0.05). Liana density and basal area differed significantly across all forest types (P < 0.0001). The importance value index (IVI) of most liana species varied greatly across the forest types. The current study has provided evidence to support the pattern of decreasing liana diversity and structure with disturbance in some tropical forests. Further studies are recommended to gain more understanding of the factors that are responsible for the divergent liana responses to disturbance in tropical forests.  相似文献   

10.
Lianas (woody climbers) are structural parasites of trees that compete with them for light and below‐ground resources. Most studies of liana–tree interactions are based on ground‐level observations of liana stem density and size, with these assessments generally assumed to reflect the amount of liana canopy cover and overall burden to the tree. We tested this assumption in a 1‐ha plot of lowland rainforest in tropical Australia. We recorded 1072 liana stems (≥1 cm diameter at breast height {dbh}) ha?1 across all trees (≥10 cm dbh) on the plot and selected 58 trees for detailed study. We estimated liana canopy cover on selected trees that hosted 0–15 liana individuals, using a 47‐m‐tall canopy crane. Notably, we found no significant correlations between liana canopy cover and three commonly used ground‐based measurements of liana abundance as follows: liana stem counts per tree, liana above‐ground biomass per tree and liana basal area per tree. We also explored the role of tree size and liana infestation and found that larger trees (≥20 cm dbh) were more likely to support lianas and to host more liana stems than smaller trees (≤20 cm dbh). This pattern of liana stem density, however, did not correlate with greater liana coverage in the canopy. Tree family was also found to have a significant effect on likelihood of hosting lianas, with trees in some families 3–4 times more likely to host a liana than other families. We suggest that local ground‐based measures of liana–tree infestation may not accurately reflect liana canopy cover for individual trees because they were frequently observed spreading through neighbouring trees at our site. We believe that future liana research will benefit from new technologies such as high‐quality aerial photography taken from drones when the aim is to detect the relative burden of lianas on individual trees.  相似文献   

11.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。 WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸( JA)、水杨酸( SA)、脱落酸( ABA)和赤霉素( GA)等,在其信号传递途径中都起着重要作用。 WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件W ̄box( TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

12.
1.  Both resources and abiotic factors may affect biotic interactions. One interaction that occurs in treehole habitats involves leaf shredders that facilitate growth of detritivores, and it may be affected by both leaf litter quantity and changes in water quality.
2.  Water chemistry in central Pennsylvania treeholes has been impacted by acid deposition, and the most common insects therein have differential survival under low pH conditions. Experimental microcosms that mimic treehole habitats were used to test the hypothesis that this abiotic factor, pH, also affects facilitative interactions. Leaf litter resources and pH were varied independently of presence of leaf-shredding scirtid beetles ( Helodes pulchella and Prionocyphon discoideus ), and the mosquito Aedes triseriatus , to examine interactions among pH, resources and insects.
3.  pH affected the interaction between the insects, such that effects of scirtids were more evident at pH 4·5 than at 6·5. Female mosquitoes were larger in the presence of scirtids, low resource and low pH conditions than in absence of scirtids, low resource and low pH conditions.
4.  There were also effects of A. triseriatus on scirtids. The size of individual scirtids was smaller in the presence of A. triseriatus , but total scirtid biomass was unaffected as survival was also higher in the presence of A. triseriatus .
5.  The effects observed on a resource-mediated biotic interaction led to the conclusion that this interaction is pH dependent, and gives support to the concept that abiotic factors play a role in determining the outcome of biotic interactions, and that acidification can have complex effects on communities.  相似文献   

13.
Recent work has indicated that the shape and size of a cell can influence how a cell spreads, develops focal adhesions, and exerts forces on the substrate. However, it is unclear how cell shape regulates these events. Here we present a computational model that uses cell shape to predict the magnitude and direction of forces generated by cells. The predicted results are compared to experimentally measured traction forces, and show that the model can predict traction force direction, relative magnitude, and force distribution within the cell using only cell shape as an input. Analysis of the model shows that the magnitude and direction of the traction force at a given point is proportional to the first moment of area about that point in the cell, suggesting that contractile forces within the cell act on the entire cytoskeletal network as a single cohesive unit. Through this model, we demonstrate that intrinsic properties of cell shape can facilitate changes in traction force patterns, independently of heterogeneous mechanical properties or signaling events within the cell.  相似文献   

14.
植被原生演替研究进展   总被引:5,自引:0,他引:5  
许中旗  李文华  鲍维楷  许晴 《生态学报》2005,25(12):3383-3389
对植被原生演替的国内外研究进展进行了评述。植被原生演替过程受到生物因素和非生物因素的共同影响。生物因素包括种子的传播方式、对原生环境的适应能力及物种之间的关系等,依靠风力传播、对裸地的极端环境具有较强适应能力的物种更容易成为原生裸地的早期定居者,某些微生物在植物的定居具有非常重要的作用。非生物因素则包括裸地表面的形状(凹、凸、平)、粗糙度、与岩石的距离等,一些特殊的微环境能够为植物的定居创造更为优越的水分、养分条件,促进植物的定居。植被原生演替是生物驱动因素与环境阻力相互作用的结果,二者的消长决定原生演替进行的模式。大量的研究表明,植被原生演替过程并不完全遵循地衣-苔藓-草本植物-木本植物的顺序,不同环境条件下的植被原生演替过程表现出明显的复杂性,这种复杂性与原生裸地环境条件的复杂性有关。该领域的研究将侧重于以下两个方面:早期定居种的适生特征(包括解剖的和生理的)以及各种微生物对植物定居过程的影响;各种非生物环境因素对植物定居的影响。  相似文献   

15.
The survival of approximately 235 000 individual tropical trees and saplings in the 50 ha permanent plot on Barro Colorado Island (BCI), Panama was analyzed over a 13-year interval (1982–1995) as a function of four biotic neighborhood variables: (i) total stem density; (ii) conspecific density; (iii) relative plant size; and (iv) relative species richness. These neighborhood variables were measured in annular rings of width 2.5 m, extending 30 m from a given focal plant, and in one more distant annulus at 47.5–50 m. Because survival was spatially autocorrelated, a Gibbs sampler and a Monte Carlo Markov chain method were used for fitting an autologistic regression model to obtain unbiased estimates of parameter variances for hypothesis testing. After pooling all species at the community level, results showed that all four variables had significant and often strong effects on focal plant survival. Three of the four variables had negative effects on focal plant survival; relative plant size was the only variable with a positive effect (18% increase in the survival odds ratio). The variables with a negative effect on the survival odds ratio, in order of their effect strength in the nearest annulus, were: stem density (a 70% reduction in the survival odds ratio), conspecific density (50% reduction) and species richness (13% reduction). A guild-level analysis revealed considerable heterogeneity among guilds in their responses to these variables. For example, survival of gap species showed a much larger positive response to relative plant size than did survival of shade-tolerant species. Survival of shrub species was positively affected by conspecific density, but canopy tree survival was negatively affected. Conspecific density negatively affected survival of rare species much more strongly than survival of common species. The neighborhood effects of conspecific density disappear within approximately 12–15 m of the focal plant. Although locally strong, the rapid spatial decay of these effects raises unanswered questions about their quantitative contribution to the maintenance of tree diversity on landscape scales in the BCI forest.  相似文献   

16.
17.
18.
The stand structure and disturbance history in a sub-boreal coniferous forest dominated byPicea jezoensis, Picea glehnii andAbies sachalinensis were investigated in four study plots set up in Taisetsuzan National Park, Japan. The effect of stand characteristics on the growth and mortality rates of understory trees was examined. Although all the stands showed inverse J-shape d.b.h. (diameter at breast height) distributions, the age structure and disturbance history differed amongst the stands. The stands with wide d.b.h. distribution (i.e. large CV and skewness) were more uneven-aged than those with narrow d.b.h. distribution (i.e. small CV and skewness). The disturbance-return interval based on the model of Hett and Loucks was 31 to 65 years. The gap ratio in the canopy was also different among the stands. These suggest that the variations in stand structure represent different occurrences of natural disturbances. Furthermore, the structural features such as size structure, canopy gap ratio and density of canopy trees also affected the growth dynamics of understory trees (≥2 m in height and <10 cm in diameter at breast height). The growth and mortality rates of understory trees changed with the canopy gap ratio and canopy tree density. The understory trees of stands with wide canopy d.b.h. distribution had higher growth and canopy recruitment rates than those of stands with narrow canopy d.b.h. distribution, contributing to the maintenance of continuous stand stratification. The understory trees of stands with narrow canopy d.b.h. distribution showed lower growth and higher mortality rates than those of stands with narrow canopy d.b.h. distribution, leading to the formation of a single-canopy structure. It is suggested that natural disturbance governs the regeneration process in the future by affecting the growth and mortality patterns of understory trees through the stand structure (size and age structure, canopy tree density, canopy gap ratio).  相似文献   

19.
20.
Assessments from field plots steer much of our current understanding of global change impacts on forest ecosystem structure and function. Recent widespread observations of net carbon accumulation in field plots have suggested that terrestrial ecosystems may be a carbon sink, possibly resulting from climate change and/or CO(2) fertilization. We hypothesize that field plots may inadequately sample inherently rare mortality events, leading to bias when plot level measurements are scaled up to larger domains. In this study, we constructed a simple computer simulation model of forest dynamics to investigate the effects of disturbance patterns on landscape-scale carbon balance estimates. The model was constructed to be a balanced biosphere at the landscape-scale with a uniform spatial pattern of forest growth rates. Disturbance gap-size distributions across the landscape were modelled with a power-law distribution. Small and frequent disturbances result in a well-mixed heterogeneous forest where even small sample plots represented domain-wide behaviour. However, with disturbances dominated by large and rare events, sample plots as large as 50 ha displayed significant bias towards growth. We suggest that the accuracy of domain level estimates of carbon balance from sample plots are highly sensitive to the distribution of disturbance events across the landscape, and to the number, size and distribution of field plots that comprise the estimate. Assumptions that small clusters of field plots may be representative of domain-wide conditions should only be made very cautiously, and warrant further investigation for verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号