共查询到20条相似文献,搜索用时 0 毫秒
1.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour. 相似文献
2.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full‐siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co‐evolution of host resistance and parasite virulence. 相似文献
3.
《Evolutionary Applications》2018,11(3):287-297
Dispersal is important for determining both species ecological processes, such as population viability, and its evolutionary processes, like gene flow and local adaptation. Yet obtaining accurate estimates in the wild through direct observation can be challenging or even impossible, particularly over large spatial and temporal scales. Genotyping many individuals from wild populations can provide detailed inferences about dispersal. We therefore utilized genomewide marker data to estimate dispersal in the classic metapopulation of the Glanville fritillary butterfly (Melitaea cinxia L.), in the Åland Islands in SW Finland. This is an ideal system to test the effectiveness of this approach due to the wealth of information already available covering dispersal across small spatial and temporal scales, but lack of information at larger spatial and temporal scales. We sampled three larvae per larval family group from 3732 groups over a six‐year period and genotyped for 272 SNPs across the genome. We used this empirical data set to reconstruct cases where full‐sibs were detected in different local populations to infer female effective dispersal distance, that is, dispersal events directly contributing to gene flow. On average this was one kilometre, closely matching previous dispersal estimates made using direct observation. To evaluate our power to detect full‐sib families, we performed forward simulations using an individual‐based model constructed and parameterized for the Glanville fritillary metapopulation. Using these simulations, 100% of predicted full‐sibs were correct and over 98% of all true full‐sib pairs were detected. We therefore demonstrate that even in a highly dynamic system with a relatively small number of markers, we can accurately reconstruct full‐sib families and for the first time make inferences on female effective dispersal. This highlights the utility of this approach in systems where it has previously been impossible to obtain accurate estimates of dispersal over both ecological and evolutionary scales. 相似文献
4.
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life‐history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15‐min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight‐induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity‐related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight‐induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade‐off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up‐regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats. 相似文献
5.
Aapo Kahilainen Saskya van Nouhuys Torsti Schulz Marjo Saastamoinen 《Global Change Biology》2018,24(9):4316-4329
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long‐term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life‐history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics. 相似文献
6.
ATSALEK RATTANAWANNEE CHANPEN CHANCHAO JULIANNE LIM SIRIWAT WONGSIRI BENJAMIN P. OLDROYD 《Insect Conservation and Diversity》2013,6(1):38-44
Abstract. 1. The giant honey bee, Apis dorsata, is a keystone pollinator. The species is heavily hunted throughout Thailand. Furthermore, forest clearing, widespread use of pesticides and proliferation of street lighting (which attracts bees, often resulting in their death) are likely to have significant impacts on population viability. 2. We examined the relatedness and genetic variation within and between aggregations of A. dorsata nests. Microsatellite analysis of 54 nests in three aggregations showed that no colonies were related as mother–daughter. Thus, if reproduction occurred at our study sites, daughter colonies dispersed. This suggests that rapid increases in A. dorsata colony numbers during general flowering events most likely occur by swarms arriving from other areas rather than by in situ reproduction. 3. The population has high levels of heterozygosity. Fst values between aggregations were not significantly different from zero (P > 0.05). This suggests that despite the formidable anthropogenic pressures that the A. dorsata population endures in northern Thailand, the species continues to enjoy a large effective population size and has high connectedness. 4. We conclude that A. dorsata is currently able to tolerate habitat fragmentation and annual harvesting. We speculate that the population is sustained by immigration from forested regions to the northwest of our study sites in Burma. 相似文献
7.
8.
9.
Christine E. Fleener Marceline Egnin Erik J. Sacks Channapatna S. Prakash Guohao He 《Global Change Biology Bioenergy》2017,9(5):965-972
Miscanthus is increasingly gaining popularity as a bioenergy grass because of its extremely high biomass productivity. Many clones of this grass were introduced into United States over the past century from East Asia where it originated, and planted for ornamental and landscaping purposes. An understanding of the genetic diversity among these naturalized populations may help in the efficient selection of potential parents in the Miscanthus breeding program. Here, we report our study analyzing the genetic diversity of 228 MiscanthusDNA samples selected from seven sites in six states (Ohio, North Carolina, Washington D.C., Kentucky, Pennsylvania, and Virginia) across the eastern United States. Ten transferable DNA markers from other plant species were employed to amplify genomic DNA of Miscanthus because of the paucity of molecular markers in Miscanthus. There were significant genetic variations observed within and among US naturalized populations. The highest genetic diversity (0.3738) was found among the North Carolina genotypes taken from Biltmore Deer Park and Biltmore, Madison County, Cody Rd. The lowest genetic diversity (0.2776) was observed among Virginia genotypes that were diverged from those from other states, suggesting Virginia genotypes might be independently introduced into the United States from the different origin. By the cluster and structure analysis, 228 genotypes were categorized into two major groups that were further divided into six subgroups at the DNA level and the groups were generally consistent with geographic region. 相似文献
10.
11.
Indrikis Krams Sanita Kecko Inna Inashkina Giedrius Trakimas Ronalds Krams Didzis Elferts Jolanta Vrublevska Priit Jõers Markus J. Rantala Severi Luoto Jorge Contreras‐Garduño Līga Jankevica Laila Meija Tatjana Krama 《Entomologia Experimentalis et Applicata》2017,165(2-3):129-137
Predator‐prey interactions are an important evolutionary force affecting the immunity of the prey. Parasitoids and mites pierce the cuticle of their prey, which respond by activating their immune system against predatory attacks. Immunity is a costly function for the organism, as it often competes with other life‐history traits for limited nutrients. We tested whether the expression of antimicrobial peptides (AMP) of the larvae of the greater wax moth Galleria mellonella (L.) (Lepidoptera: Pyralidae) changes as a consequence of insertion of a nylon monofilament, which acts like a synthetic parasite. The treatment was done for larvae grown on a high‐quality vs. a low‐quality diet. The expression of Gloverin and 6‐tox were upregulated in response to the insertion of the nylon monofilament. The expression of 6‐tox, Cecropin‐D, and Gallerimycin were significantly higher in the ‘low‐quality diet’ group than in the ‘high‐quality diet’ group. As food quality seems to affect AMP gene expression in G. mellonella larvae, it should always be controlled for in studies on bacterial and fungal infections in G. mellonella. 相似文献
12.
Xinhai Ye Zhichao Yan Yi Yang Shan Xiao Longfei Chen Jiale Wang Fei Wang Shijiao Xiong Yang Mei Fang Wang Hongwei Yao Qisheng Song Fei Li Qi Fang John H. Werren Gongyin Ye 《Molecular ecology resources》2020,20(5):1384-1402
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps. 相似文献
13.
Crop plant domestication can change plant resistance to herbivores leading to differences in pest pressure experienced by crop plants and their wild relatives. To compare resistance to herbivores between domesticated and wild fruit trees, we quantified direct resistance and indirect resistance to a pest insect, the florivorous apple blossom weevil Anthonomus pomorum (Coleoptera: Curculionidae), for the cultivated apple Malus domestica and two wild apple species, the European crab apple M. sylvestris and the exotic M. kirghisorum. We measured weevil infestation and performance (weight, sex ratio), and weevil parasitism by parasitoid wasps for different cultivars of M. domestica and for the two wild apple species. To explain weevil and parasitoid responses to different apple species, we quantified tree characteristics including nitrogen content, size of flower buds, bark roughness, tree size, tree phenology and tree position. We found significant differences in susceptibility to weevil infestation between apple species, with lowest infestation (highest apple resistance) in M. domestica and highest infestation in M. kirghisorum. The suitability of apple species also varied significantly: weevils emerging from M. sylvestris were significantly lighter than those from M. kirghisorum. Parasitism of A. pomorum by different parasitoid species was significantly higher in M. sylvestris than in M. domestica. Infestation, weevil weight and parasitism were positively related to tree characteristics: infestation to bud nitrogen content and bark roughness, weevil size to nitrogen content and bud size, and parasitism to tree height and bud density. Our study revealed marked differences between apple species in susceptibility and suitability for the pest herbivore, but also for antagonistic parasitoids. Whereas direct resistance appeared to be higher in cultivated apple, indirect resistance via parasitoids was apparently higher in wild apple trees. Our findings suggest that wild and cultivated apple trees possess different resistance traits that may be combined to optimize resistance in commercial apple cultivars. 相似文献
14.
Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand‐alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations. 相似文献
15.
A. A. Forbes L. A. Rice N. B. Stewart W. L. Yee M. Neiman 《Journal of evolutionary biology》2013,26(6):1330-1340
How do asexual taxa become adapted to a diversity of environments, and how do they persist despite changing environmental conditions? These questions are linked by their mutual focus on the relationship between genetic variation, which is often limited in asexuals, and the ability to respond to environmental variation. Asexual taxa originating from a single ancestor present a unique opportunity to assess rates of phenotypic and genetic change when access to new genetic variation is limited to mutation. Diachasma muliebre is an asexual Hymenopteran wasp that is geographically and genetically isolated from all sexual relatives. D. muliebre attack larvae of the western cherry fruit fly (Rhagoletis indifferens), which in turn feed inside bitter cherry fruit (Prunus emarginata) in August and September. R. indifferens has recently colonized a new host plant with an earlier fruiting phenology (June/July), domesticated sweet cherries (P. avium), and D. muliebre has followed its host into this temporally earlier niche. We tested three hypotheses: 1) that all D. muliebre lineages originate from a single asexual ancestor; 2) that different D. muliebre lineages (as defined by unique mtDNA haplotypes) have differentiated on their ancestral host in an important life‐history trait, eclosion timing; and 3) that early‐eclosing lineages have preferentially colonized the new sweet cherry niche. We find that mitochondrial COI and microsatellite data provide strong support for a single ancestral origin for all lineages. Furthermore, COI sequencing revealed five mitochondrial haplotypes among D. muliebre, and individual wasps possessing one distinctive mitochondrial haplotype (haplotype II) eclosed as reproductive adults significantly earlier than wasps with all other haplotypes. In addition, this early‐eclosing lineage of D. muliebre is one of two lineages that have colonized the P. avium habitat, consistent with the preferential colonization hypothesis. These data suggest that D. muliebre has evolved adaptive phenotypic variation despite limited genetic variation, and that this variation has subsequently allowed an expansion of some wasps into a novel habitat. The D. muliebre system may allow for in‐depth study of adaptation and long‐term persistence of asexual taxa. 相似文献
16.
Arra Yugander Duraisamy Ladhalakshmi Vellaichamy Prakasham Satendra K. Mangrauthia Madamsetty S. Prasad Donempudi Krishnaveni Maganti Sheshu Madhav Raman M. Sundaram Gouri Sankar Laha 《Journal of Phytopathology》2015,163(6):465-474
Sheath blight disease of rice caused by Rhizoctonia solani is one of the most dreaded plant diseases faced by the rice farmers all over the world. None of the commercially cultivated rice varieties have sufficient level of field resistance, and the disease is presently being managed by chemical pesticides. In this study, 40 isolates of rice sheath blight pathogen, collected from diverse rice ecosystems from 12 different states of India, were characterized for their morphological, pathological and genetic variation. The isolates showed wide morphological variation in terms of size of sclerotia and abundance of sclerotia production. The virulence of each pathogen isolate was studied on four rice varieties, that is TN1, IR 64, Tetep and Swarnadhan in glasshouse, and observations were taken by measuring the relative lesion height. The relative lesion heights produced by these isolates on four different rice varieties varied widely. Genetic variation of the isolates was analysed using ISSR markers. The primers based on AG, GA, AC and CA repeats were informative and revealed polymorphism among the isolates. The polymorphism information content (PIC) of the primers ranged from 0.80 to 0.96, while the resolving power (Rp) ranged from 3.7 to 15.35. Largely, grouping of the isolates happened based on their geographical origin. One isolate from Titabar, Assam, and another from Adialabad, Telangana, were quite distinct from rest of the isolates. 相似文献
17.
The capacity of restored plant populations to adapt to new environmental challenges depends on within‐population genetic variation. We examined how much genetic and environmentally based variation for fitness‐associated traits exists within populations of two native grasses commonly used for restoration in California. We were also interested in understanding how phenotypic expression of genetic variation for these traits varies with growth environment. Thirty maternal families of Elymus glaucus (Blue wild rye) and Nassella pulchra (Purple needlegrass) were sampled from both coastal and interior populations and reciprocally transplanted into three replicated common gardens with and without interspecific competition at each site. Reproductive output of families differed both among years and with competition treatments. Phenotypic expression of genetic variation in culm production differed among populations and was very low when families were grown with interspecific competition. Without interspecific competition, the degree of genetic determination peaked in year two in both species (8.4 and 15.1% in E. glaucus and N. pulchra, respectively). Significant genetic differences in reproduction and phenotypic plasticity were found among N. pulchra subpopulations sampled less than 3 km apart, further highlighting the importance of thoroughly sampling available genetic variation in populations used for restoration. The variable and generally low expression of genetic variation indicates that rates of adaptation in restored populations of these native grasses may vary temporally and may be especially slow within competitive environments. 相似文献
18.
Christoph Vorburger Pravin Ganesanandamoorthy Marek Kwiatkowski 《Ecology and evolution》2013,3(3):706-713
Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont‐conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont‐conferred resistance. On the contrary, symbiont‐protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids. 相似文献
19.
María Josefina Buonocore Biancheri Lorena C. Surez Laura Patricia Bezdjian Guido Alejandro Van Nieuwenhove Juan Rull Sergio Marcelo Ovruski 《Journal of Applied Entomology》2019,143(4):344-356
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases. 相似文献
20.
Adela Danci Michael Hrabar Shari Ikoma Paul W. Schaefer Gerhard Gries 《Entomologia Experimentalis et Applicata》2013,149(3):229-240
The ability of insects to learn locations of future resources has rarely been studied. Here, we show that males of the solitary parasitoid wasp Pimpla disparis Viereck (Hymenoptera: Ichneumonidae) learn locations of future mates. Male P. disparis reportedly arrest on parasitized pupae of wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae), and gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae), when mate emergence is imminent. We tested the hypothesis that male P. disparis identify, memorize, and revisit the location(s) of parasitized host pupae as a strategy to attain mates. We colour‐coded P. disparis males in the field and noticed that they revisit parasitized moth pupae on consecutive days, and arrest on those pupae with a near‐emergence P. disparis parasitoid. In a laboratory experiment with two large corrugated cardboard cylinders (CCCs) as surrogate trees, each CCC bearing two parasitized moth pupae with a near‐emergence P. disparis parasitoid or two pupae not parasitized, males on day 1 of the experiment visited parasitized pupae more often than pupae not parasitized. On day 2, when each CCC had been replaced and now carried pupae that were not parasitized, males returned to the same CCC, or the same micro‐location on that CCC, which on day 1 had carried parasitized pupae. Field and laboratory data combined indicate that male P. disparis learn the location of future mates. With female P. disparis being haplodiploid and capable of reproducing without mating experience, the onus to find a mate is on males. They accomplish this by detecting parasitized pupae, learning their location, revisiting them frequently, and then arresting on them when the prospective mate nears emergence, taking a 50% chance that it is indeed a female. 相似文献