首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

2.
3.
The population dynamics of a parasite depend on species traits, host dynamics and the environment. Those dynamics are reflected in the genetic structure of the population. Habitat fragmentation has a greater impact on parasites than on their hosts because resource distribution is increasingly fragmented for species at higher trophic levels. This could lead to either more or less genetic structure than the host, depending on the relative dispersal rates of species. We examined the spatial genetic structure of the parasitoid wasp Hyposoter horticola, and how it was influenced by dispersal, host population dynamics and habitat fragmentation. The host, the Glanville fritillary butterfly, lives as a metapopulation in a fragmented landscape in the Åland Islands, Finland. We collected wasps throughout the 50 by 70 km archipelago and determined the genetic diversity, spatial population structure and genetic differentiation using 14 neutral DNA microsatellite loci. We compared the genetic structure of the wasp with that of the host butterfly using published genetic data collected over the shared landscape. Using maternity assignment, we also identified full‐siblings among the sampled parasitoids to estimate the dispersal range of individual females. We found that because the parasitoid is dispersive, it has low genetic structure, is not very sensitive to habitat fragmentation and has less spatial genetic structure than its butterfly host. The wasp is sensitive to regional rather than local host dynamics, and there is a geographic mosaic landscape for antagonistic co‐evolution of host resistance and parasite virulence.  相似文献   

4.
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.  相似文献   

5.
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long‐term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life‐history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics.  相似文献   

6.
Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more‐probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among‐population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host‐finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations.  相似文献   

7.
Genetic comparisons of parasitoids and their hosts are expected to reflect ecological and evolutionary processes that influence the interactions between species. The parasitoid wasp, Cotesia vestalis, and its host diamondback moth (DBM), Plutella xylostella, provide opportunities to test whether the specialist natural enemy migrates seasonally with its host or occurs as resident population. We genotyped 17 microsatellite loci and two mitochondrial genes for 158 female adults of C. vestalis collected from 12 geographical populations, as well as nine microsatellite loci for 127 DBM larvae from six separate sites. The samplings covered both the likely source (southern) and immigrant (northern) areas of DBM from China. Populations of C. vestalis fell into three groups, pointing to isolation in northwestern and southwestern China and strong genetic differentiation of these populations from others in central and eastern China. In contrast, DBM showed much weaker genetic differentiation and high rates of gene flow. TESS analysis identified the immigrant populations of DBM as showing admixture in northern China. Genetic disconnect between C. vestalis and its host suggests that the parasitoid did not migrate yearly with its host but likely consisted of resident populations in places where its host could not survive in winter.  相似文献   

8.
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases.  相似文献   

9.
Crop plant domestication can change plant resistance to herbivores leading to differences in pest pressure experienced by crop plants and their wild relatives. To compare resistance to herbivores between domesticated and wild fruit trees, we quantified direct resistance and indirect resistance to a pest insect, the florivorous apple blossom weevil Anthonomus pomorum (Coleoptera: Curculionidae), for the cultivated apple Malus domestica and two wild apple species, the European crab apple M. sylvestris and the exotic M. kirghisorum. We measured weevil infestation and performance (weight, sex ratio), and weevil parasitism by parasitoid wasps for different cultivars of M. domestica and for the two wild apple species. To explain weevil and parasitoid responses to different apple species, we quantified tree characteristics including nitrogen content, size of flower buds, bark roughness, tree size, tree phenology and tree position. We found significant differences in susceptibility to weevil infestation between apple species, with lowest infestation (highest apple resistance) in M. domestica and highest infestation in M. kirghisorum. The suitability of apple species also varied significantly: weevils emerging from M. sylvestris were significantly lighter than those from M. kirghisorum. Parasitism of A. pomorum by different parasitoid species was significantly higher in M. sylvestris than in M. domestica. Infestation, weevil weight and parasitism were positively related to tree characteristics: infestation to bud nitrogen content and bark roughness, weevil size to nitrogen content and bud size, and parasitism to tree height and bud density. Our study revealed marked differences between apple species in susceptibility and suitability for the pest herbivore, but also for antagonistic parasitoids. Whereas direct resistance appeared to be higher in cultivated apple, indirect resistance via parasitoids was apparently higher in wild apple trees. Our findings suggest that wild and cultivated apple trees possess different resistance traits that may be combined to optimize resistance in commercial apple cultivars.  相似文献   

10.
Predator‐prey interactions are an important evolutionary force affecting the immunity of the prey. Parasitoids and mites pierce the cuticle of their prey, which respond by activating their immune system against predatory attacks. Immunity is a costly function for the organism, as it often competes with other life‐history traits for limited nutrients. We tested whether the expression of antimicrobial peptides (AMP) of the larvae of the greater wax moth Galleria mellonella (L.) (Lepidoptera: Pyralidae) changes as a consequence of insertion of a nylon monofilament, which acts like a synthetic parasite. The treatment was done for larvae grown on a high‐quality vs. a low‐quality diet. The expression of Gloverin and 6‐tox were upregulated in response to the insertion of the nylon monofilament. The expression of 6‐tox, Cecropin‐D, and Gallerimycin were significantly higher in the ‘low‐quality diet’ group than in the ‘high‐quality diet’ group. As food quality seems to affect AMP gene expression in G. mellonella larvae, it should always be controlled for in studies on bacterial and fungal infections in G. mellonella.  相似文献   

11.
The encyrtid genus Comperiella Howard has so far not been reported in the Philippines, where there is currently an outbreak of the coconut scale insect Aspidiotus rigidus Reyne particularly in the southern parts of the island of Luzon and in some areas in Mindanao. Among Comperiella species, only C. unifasciata Ishii has been reported as a parasitoid of A. rigidus. We report not only new sightings of this parasitoid genus in the Philippines from surveys conducted in parts of the provinces of Laguna and Batangas, but also the discovery of a possibly new species that, like C. unifasciata, has been found to parasitize A. rigidus at a high rate. These findings have presented a potential of biological control against the coconut scale insect problem that has threatened the coconut industry in the country.  相似文献   

12.
In prey‐predator systems, top‐down effects can be a powerful determinant for spatial distributions of prey through their search for enemy‐free space. Leafminers live and eat within leaves, making feeding tracks called mines, and mine conspicuousness exposes them to a high risk of parasitism. Those lepidopteran leafminers that use lower leaf surfaces as mining sites show wide evolutionary radiation. We hypothesized that leafminers making mines on the lower surface are less often detected by parasitoids and thus have a selective advantage in avoiding parasitism compared to those on the upper surface. To investigate the adaptiveness of lower‐surface mining, we examined the relationship between parasitism and within‐leaf mine distribution for 3 years using a field population of the leafminer Phyllocnistis spec. (Lepidoptera: Gracillariidae, Phyllocnistinae), which prefers the lower surface of leaves of the Japanese privet, Ligustrum japonicum Thunb. (Oleaceae). Parasitoid attack was more frequent in the upper‐surface mines than in the lower‐surface mines and on leaves with upper‐surface mines than on leaves with only lower‐surface mines. When both surfaces were mined, leafminers on the lower surface could avoid parasitism. Upper‐surface mines were attacked by more parasitoid species as compared to lower‐surface mines. Although the results demonstrated that mining on the lower surface was advantageous in avoiding parasitism, the vulnerability of lower‐surface mines to parasitism varied depending on their abundance. When many lower‐surface mines were present, lower‐surface mines suffered a higher parasitism rate than upper‐surface mines, probably because parasitoids formed search images for and concentrated on lower‐surface mines. This study suggests that the preferential use of the lower leaf surface by leafminers is in part attributed to interactions with parasitoids.  相似文献   

13.
1. Hyssopus pallidus Askew (Hymenoptera, Eulophidae) is a gregarious ectoparasitoid of the two tortricid moths species Cydia molesta Busck and C. pomonella L. (Lepidoptera, Tortricidae). It paralyses and parasitizes different larval instars of both species inside the apple fruit, which leads to the death of the caterpillar. 2. We assessed the influence of host species characteristics and host food on the performance of the parasitoid female in terms of clutch size decisions and fitness of the F(1) generation. 3. A comparison of clutch size revealed that female parasitoids deposited similar numbers of eggs on the comparatively smaller C. molesta hosts as on the larger C. pomonella hosts. The number of parasitoid offspring produced per weight unit of host larva was significantly higher in C. molesta than in C. pomonella, which is contrary to the general prediction that smaller hosts yield less parasitoid offspring. However, the sex ratio was not influenced by host species that differed considerably in size. 4. Despite the fact that less host resources were available per parasitoid larva feeding on C. molesta caterpillars, the mean weight of emerging female wasps was higher in the parasitoids reared on C. molesta. Furthermore, longevity of these female wasps was neither influenced by host species nor by the food their host had consumed. In addition we did not find a positive relationship between adult female weight and longevity. 5. Parasitoid females proved to be able to assess accurately the nutritional quality of an encountered host and adjust clutch size accordingly. These findings indicate that host size is not equal to host quality. Thus host size is not the only parameter to explain the nutritional quality of a given host and to predict fitness gain in the subsequent generation.  相似文献   

14.
Most attention to size‐time trade‐offs of insects has focused on herbivore risk, with considerably less attention paid to parasitoids. Here, we focus on parasitoid risk, comparing the fates of unparasitised herbivore hosts and parasitised hosts that protect the parasitoids. Success of a koinobiont parasitoid (host grows after parasitisation) depends on maintaining a delicate balance with its host, thereby ensuring its own survival while the host grows. To evaluate growth rate–mortality rate relationships of host and parasitoid, we compared several aspects of the growth, phenology, and behaviour of unparasitised fern moth [Herpetogramma theseusalis (Walker) (Lepidoptera: Crambidae)] larvae and larvae parasitised by Alabagrus texanus (Cresson) (Hymenoptera: Braconidae), a solitary koinobiont (one parasitoid per host) wasp. Host larvae feed and construct shelters on sensitive fern, Onoclea sensibilis L. (Dryopteridaceae). Alabagrus texanus parasitise early‐instar moths in late summer, which overwinter in their host, emerging in mid‐summer to pupate and eclose. During the autumn following hatching and the immediately following spring, parasitised and unparasitised moth larvae did not differ in size, took similar time to choose between satisfactory and unsatisfactory foods, and built similar shelters. Prior to any other changes noted, more parasitised than unparasitised larvae also died when severely starved. Parasitised larvae subsequently grew less and pupated later than unparasitised ones (small size, slow growth), but consumed similar amounts of food. Although the numerically dominant parasitoid of fern moths, we concluded that Atexanus do not efficiently exploit their hosts.  相似文献   

15.
Oviposition patterns of the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), differ between common cabbage (Brassica oleracea L. var. capitata) and Chinese cabbage (Brassica rapa L. var. pekinensis) (Brassicaceae) host plants. This study shows that the moth prefers to oviposit on adaxial rather than abaxial leaf surfaces and petioles of both host plants. More eggs were laid in leaf veins than on leaf laminas of both host plants, especially in Chinese cabbage, where 94.6% of eggs were laid in veins. On Chinese cabbage, very few eggs were laid in clusters (≥2 eggs), whereas on common cabbage approximately 30% of eggs were laid in groups of 2 or more eggs. Removal of wax from common cabbage leaves dramatically increased the number of eggs laid singly on the leaf lamina of treated plants, suggesting that leaf waxes affect how eggs are distributed by ovipositing DBM. Eggs were most susceptible to removal by rainfall from the plant surface immediately (<1 h) after oviposition and when close to hatching (>72h old) whereas they were least susceptible 24 h after oviposition. Eggs laid on common cabbage plants were more susceptible to simulated rainfall than eggs laid on Chinese cabbage plants. On common cabbage plants, egg susceptibility to rainfall on different plant parts ranked adaxial leaf surfaces>petioles = abaxial leaf surfaces>stem, but there was no difference in egg susceptibility to rainfall on the various plant parts of Chinese cabbage. Furthermore, on common cabbage plants, eggs laid on both adaxial and abaxial leaf surfaces were afforded significant protection from the effects of rainfall by leaves higher in the plant canopy. On common cabbage plants, oviposition patterns reduce the potential impact of rainfall on eggs, possibly reducing the effect of this important abiotic mortality factor in the field.  相似文献   

16.
The utility of five species of necrophagous flies (Diptera) as pupal hosts for Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) was examined by comparing incidences of parasitism, fecundity, and several features of wasp development at three rearing temperatures. Species differences in host suitability were evident in all life history features examined, with the highest incidences of parasitism, largest clutches and adult body sizes, and shortest periods of development occurring when the sarcophagid Sarcophaga bullata Parker served as hosts, regardless of temperature in which the wasps developed. Puparia of the calliphorids Lucilia illustris Meigen, Phormia regina Meigen, and Protophormia terraenovae Robineau‐Desvoidy were also accepted as hosts by the female parasitoids, albeit not equally so, and each yielded large, female‐biased broods. By contrast, pupae of the calliphorid Chrysomya rufifacies (Macquart) were not well suited to serve as an oviposition site or support the development of N. vitripennis. When successful parasitism did occur on any host species, duration of parasitoid development increased, adult body sizes were truncated, male‐biased sex ratios were produced, and mortality from egg hatch to adult emergence elevated with increasing rearing temperature. Unlike with the four other fly species, Crufifacies did not yield any adult parasitoids when the rearing temperature was 35 °C. The results argue that developmental data determined for this wasp derived from a single host species is not sufficient for applying to all scenarios in which wasp development is necessary to estimate a postmortem interval or periods of insect activity.  相似文献   

17.
The generally known “adult size‐fitness hypothesis” (ASFH) is applied to the gregarious parasitic wasp Anaphes flavipes (Foerster, 1841) (Hymenoptera: Mymaridae). ASFH is dependent on the reproductive strategy of the mother, which means the larger females have more offspring compared to smaller females. Two main factors, the mother's body size and food quantity received during larval development, can affect the body size of the offspring. For the first time, we present a study on the relative effect of both factors on fitness of the same species, wasp A. flavipes. Our data confirmed that females of A. flavipes with larger body sizes had more offspring compared to smaller ones. At the same time, mother's body size does not seem to affect the body size of the offspring. The other studied factor, quantity of food received during larval development, can be influenced by reproductive strategy (number of parasitoids developing in one host egg), host quality or the duration of development. We found only the reproductive strategy to have a statistically significant effect on body size. We demonstrated that the variable reproductive strategy (VRS) of wasp A. flavipes causes a plasticity in body size and future number of offspring. The generally known “trade‐off” scheme (more small offspring or fewer bigger offspring) does not apply to A. flavipes, because their large females have more offspring and it is their reproductive strategy that determines body size.  相似文献   

18.
Biological control efficiency can be improved by developing effective mass‐rearing systems to produce large numbers of high‐quality parasitoids. This study explored an alternative host for rearing Sclerodermus brevicornis (Kieffer) (Hymenoptera: Bethylidae), a potential biocontrol agent for the suppression of exotic and invasive wood‐boring longhorn beetle (Coleoptera: Cerambycidae) populations in the European agroforestry ecosystems. We tested larvae of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae), as host for the parasitoid. We quantified the probability and timing of host attack and parasitism as well as reproductive success, offspring production, and the characteristics of adult offspring. As S. brevicornis is a quasi‐social species (multiple females, communally produced offspring broods), we also explored the effects of varying the number of females to which individual hosts were presented, with the aim of determining the optimal female‐to‐host ratio. As time to host attack can be a limiting factor in S. brevicornis rearing protocols, we tested the use of adult females of another bethylid species, Goniozus legneri Gordh, to paralyse C. cephalonica larvae prior to presentation. We identified the conditions within our experiment that maximized offspring production per host and offspring production per adult female parasitoid. We found that C. cephalonica is suitable as a factitious host and, as it is considerably more straightforward for laboratory rearing than cerambycid species, it is a good candidate for adoption by future S. brevicornis mass‐rearing and release programmes.  相似文献   

19.
Larval and adult mosquitoes mount immune responses against pathogens that invade their hemocoel. Although it has been suggested that a correlation exists between immune processes across insect life stages, the influence that an infection in the hemocoel of a larva has on the immune system of the eclosed adult remains unknown. Here, we used Anopheles gambiae to test whether a larval infection influences the adult response to a subsequent bacterial or malaria parasite infection. We found that for both female and male mosquitoes, a larval infection enhances the efficiency of bacterial clearance following a secondary infection in the hemocoel of adults. The adults that emerge from infected larvae have more hemocytes than adults that emerge from naive or injured larvae, and individual hemocytes have greater phagocytic activity. Furthermore, mRNA abundance of immune genes—such as cecropin A, Lysozyme C1, Stat‐A, and Tep1—is higher in adults that emerge from infected larvae. A larval infection, however, does not have a meaningful effect on the probability that female adults will survive a systemic bacterial infection, and increases the susceptibility of females to Plasmodium yoelii, as measured by oocyst prevalence and intensity in the midgut. Finally, immune proficiency varies by sex; females exhibit increased bacterial killing, have twice as many hemocytes, and more highly express immune genes. Together, these results show that a larval hemocoelic infection induces transstadial immune activation—possibly via transstadial immune priming—but that it confers both costs and benefits to the emerged adults.  相似文献   

20.
Local climate is an important source of selection on thermal reaction norms that has been well investigated in cline studies, where populations sampled along altitudinal or latitudinal gradients are compared. Several biotic factors vary with climate, but are rarely integrated as alternative agents of selection to climatic factors. We tested the hypothesis that habitat may select for thermal reaction norms and magnitude of phenotypic plasticity in a drosophila parasitoid, independently of the climate of origin. We sampled populations of Leptopilina boulardi, a Drosophila parasitoid in two different habitats, orchards and forests. Orchards offer laying opportunities over small distances for parasitoids, with a low variability in the number of hosts per patch, while forests offer more dispersed and more variable patches. The sampling was realized in a temperate and a Mediterranean climate. We measured egg load, volume of eggs, longevity and lipid content for parasitoids reared at two temperatures. Reaction norms were opposite for populations from forests and orchards for investment in reproduction, independently of the climate of origin. The maximal investment of resources in reproduction occurred at the lower temperature in orchards and the higher temperature in forests. Host distribution differences between habitats may explain these opposite reaction norms. We also observed a flatter reaction norm for egg load in forests than in orchards. This relative canalization may have been selected in response to the higher variability in laying opportunities observed in forests. Our results demonstrate the potential role of resource distribution in evolution of thermal plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号