首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both large herbivores and termites are key functional groups in savanna ecosystems, and in many savanna areas, large termite mounds (termitaria) are associated with distinct woody clusters. Studies on the effect of large mammals on tree regeneration are few, and the results are conflicting. Large herbivores have been found to be important seedling predators in some areas, but facilitate tree regeneration by outcompeting small mammals and reducing grass cover in other areas. Through the use of the experimental fencing of termite mounds and adjacent savanna areas in this study, we investigated how termites and large herbivores influence tree regeneration. Termite mounds had a higher number of seedlings, more species richness, more alpha diversity (OD) and lower evenness (E) than savanna plots. Large herbivores did not significantly affect overall seedling density, species richness, OD or E. Beta diversity was higher in savanna areas than on termitaria, and beta diversity decreased in savanna areas when herbivores were excluded. Herbivore exclusion increased the density of the 12 (40 %) most common seedling species, representing 79 % of all seedlings, and fenced plots had relatively taller seedlings than open plots. Thus, termites were the main determinants of tree regeneration in our study area, but large mammals regulated the most common species. Although our study confirms previous work suggesting that large herbivores affect tree regeneration, we found that termites were an even more important determinant. Termite impacts on tree regeneration deserve increased attention by savanna ecologists.  相似文献   

2.
Large herbivores and termites are important functional groups in African savannahs. Both groups affect small mammals, which are also important determinants for savannah structure and function. Because vegetation on Macrotermes mounds are preferentially grazed by large herbivores, and mounds represent resource-rich distinct habitat patches for small mammals in relatively resource-poor savannahs, termite mounds are ideal sites for studies of how grazing by large mammals and productivity affect communities of small mammals. We conducted an experiment in Lake Mburo National Park, Uganda, with four treatments: large vegetated Macrotermes mounds (with and without large herbivores) and adjacent savannah areas (with and without large herbivores). We replicated the treatment blocks nine times and trapped small mammals regularly over a period of almost 2 years. Small mammal species assemblages differed considerably between mounds and savannah areas. Grazing had a substantial effect on small mammal species assemblages in the resource-poor savannah, but not in the relatively resource-rich termitaria. Small mammal species abundance, biomass, and richness were higher on termite mounds than adjacent savannah areas. Excluding large herbivores caused a major increase in species abundance, biomass, and richness both on savannah and termitaria. Herbaceous plant species evenness was an important determinant of the small mammal community. Small mammal biomass increased with high plant dominance, indicating that a few dominant plant species are important for biomass production of small mammals. Small mammal diversity was not related to any of the treatments, but increased with plant species evenness as well as richness. Fencing increased species dominance in the small mammal community on both savannah and termitaria, probably because competitive patterns shift from inter-guild (that is, between large and small mammals) to intra-guild (that is, between small mammals) when large mammals are excluded. The study highlights the complex interactions among large herbivores, termites, herbaceous plants, and small mammals in African savannahs. When studying the structure and function of small mammal communities it is therefore important to consider several coexisting functional groups.  相似文献   

3.
Fungus‐growing termites and their symbiotic Termitomyces fungi are critically important carbon and nutrient recyclers in arid and semiarid environments of sub‐Saharan Africa. A major proportion of plant litter produced in these ecosystems is decomposed within nest chambers of termite mounds, where temperature and humidity are kept optimal for the fungal symbionts. While fungus‐growing termites are generally believed to exploit a wide range of different plant substrates, the actual diets of most species remain elusive. We studied dietary niches of two Macrotermes species across the semiarid savanna landscape in the Tsavo Ecosystem, southern Kenya, based on carbon (C) and nitrogen (N) stable isotopes in Termitomyces fungus combs. We applied Bayesian mixing models to determine the proportion of grass and woody plant matter in the combs, these being the two major food sources available for Macrotermes species in the region. Our results showed that both termite species, and colonies cultivating different Termitomyces fungi, occupied broad and largely overlapping isotopic niches, indicating no dietary specialization. Including laser scanning derived vegetation cover estimates to the dietary mixing model revealed that the proportion of woody plant matter in fungus combs increased with increasing woody plant cover in the nest surroundings. Nitrogen content of fungus combs was positively correlated with woody plant cover around the mounds and negatively correlated with the proportion of grass matter in the comb. Considering the high N demand of large Macrotermes colonies, woody plant matter seems to thus represent a more profitable food source than grass. As grass is also utilized by grazing mammals, and the availability of grass matter typically fluctuates over the year, mixed woodland‐grasslands and bushlands seem to represent more favorable habitats for large Macrotermes colonies than open grasslands.  相似文献   

4.
Both termites and large mammalian herbivores (LMH) are savanna ecosystem engineers that have profound impacts on ecosystem structure and function. Both of these savanna engineers modulate many common and shared dietary resources such as woody and herbaceous plant biomass, yet few studies have addressed how they impact one another. In particular, it is unclear how herbivores may influence the abundance of long‐lived termite mounds via changes in termite dietary resources such as woody and herbaceous biomass. While it has long been assumed that abundance and areal cover of termite mounds in the landscape remain relatively stable, most data are observational, and few experiments have tested how termite mound patterns may respond to biotic factors such as changes in large herbivore communities. Here, we use a broad tree density gradient and two landscape‐scale experimental manipulations—the first a multi‐guild large herbivore exclosure experiment (20 years after establishment) and the second a tree removal experiment (8 years after establishment)—to demonstrate that patterns in Odontotermes termite mound abundance and cover are unexpectedly dynamic. Termite mound abundance, but areal cover not significantly, is positively associated with experimentally controlled presence of cattle, but not wild mesoherbivores (15–1,000 kg) or megaherbivores (elephants and giraffes). Herbaceous productivity and tree density, termite dietary resources that are significantly affected by different LMH treatments, are both positive predictors of termite mound abundance. Experimental reductions of tree densities are associated with lower abundances of termite mounds. These results reveal a richly interacting web of relationships among multiple savanna ecosystem engineers and suggest that termite mound abundance and areal cover are intimately tied to herbivore‐driven resource availability.  相似文献   

5.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

6.
Fungus‐growing termites of the subfamily Macrotermitinae together with their highly specialized fungal symbionts (Termitomyces) are primary decomposers of dead plant matter in many African savanna ecosystems. The termites provide crucial ecosystem services also by modifying soil properties, translocating nutrients, and as important drivers of plant succession. Despite their obvious ecological importance, many basic features in the biology of fungus‐growing termites and especially their fungal symbionts remain poorly known, and no studies have so far focused on possible habitat‐level differences in symbiont diversity across heterogeneous landscapes. We studied the species identities of Macrotermes termites and their Termitomyces symbionts by excavating 143 termite mounds at eight study sites in the semiarid Tsavo Ecosystem of southern Kenya. Reference specimens were identified by sequencing the COI region from termites and the ITS region from symbiotic fungi. The results demonstrate that the regional Macrotermes community in Tsavo includes two sympatric species (M. subhyalinus and M. michaelseni) which cultivate and largely share three species of Termitomyces symbionts. A single species of fungus is always found in each termite mound, but even closely adjacent colonies of the same termite species often house evolutionarily divergent fungi. The species identities of both partners vary markedly between sites, suggesting hitherto unknown differences in their ecological requirements. It is apparent that both habitat heterogeneity and disturbance history can influence the regional distribution patterns of both partners in symbiosis.  相似文献   

7.
Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa’s largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.  相似文献   

8.
Herbivores do not forage uniformly across landscapes, but select for patches of higher nutrition and lower predation risk. Macrotermes mounds contain higher concentrations of soil nutrients and support grasses of higher nutritional value than the surrounding savanna matrix, attracting mammalian grazers that preferentially forage on termite mound vegetation. However, little is known about the spatial extent of such termite influence on grazing patterns and how it might differ in time and space. We measured grazing intensity in three African savanna types differing in rainfall and foliar nutrients and predicted that the functional importance of mounds for grazing herbivores would increase as the difference in foliar nutrient levels between mound and savanna matrix grasses increases and the mounds become more attractive. We expected this to occur in nutrient‐poor areas and during the dry season when savanna matrix grass nutrient levels are lower. Tuft use and grass N and P content were measured along transects away from termite mounds, enabling calculation of the spatial extent of termite influence on mammalian grazing. Using termite mound densities estimated from airborne light detection and ranging (LiDAR), we further upscaled field‐based results to determine the percentage of the landscape influenced by termite activity. Grasses in close proximity to termite mounds were preferentially grazed at all sites and in both seasons, but the strength of mound influence varied between savanna types and seasons. In the wet season, mounds had a relatively larger effect on grazers at the landscape scale in the nutrient‐poor, wetter savanna, whereas in the dry season the pattern was reversed with more of the landscape influenced at the nutrient‐rich, driest site. Our results reveal that termite mounds enhance the value of savanna landscapes for herbivores, but that their functional importance varies across savanna types and seasons.  相似文献   

9.
Mound building termites contribute to savanna vegetation heterogeneity   总被引:1,自引:0,他引:1  
With biomass densities comparable to large ungulates and megaherbivores, termites play a key functional role in many tropical savanna ecosystems. This study focuses on vegetated termite mounds (termitaria) constructed by the Termitidae species Macrotermes herus. We studied how resource rich termitaria affect graminoid herbs (Poaceae and Cyperaceae), forbs and woody species composition and diversity. The density of termitaria explained 89% of the variation in dense thickets in the area. Fire tolerant Acacia species dominated the open savanna while fire sensitive species like Grewia spp. and the succulent Euphorbia candelabrum were restricted to termite mounds. Termitaria plots had four times the mean number of woody species and supported three times as many forb species as the adjacent savanna. For woody species, both the Shannon–Wiener index and the Shannon evenness index were higher on temitaria than on the savanna. There were no differences for graminoid herbs, except for the Shannon evenness index which was higher on termitaria. Our results indicate that graminoid herb richness peaks at lower productivity levels than trees and forbs in savanna ecosystems, as also recently found in temperate areas.  相似文献   

10.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   

11.
The species composition, abundance and colony sizes of terrestrial termites were studied in five forest habitats of Cat Tien National Park, Southern Vietnam. Twenty-four species belonging to Rhinotermitidae (1 species) and Termitidae (23 species, mostly Macrotermitinae), were found in mounds and in soil samples. The density of inhabited termite nests in different habitats averaged 68 per hectare (range 44–106), most nests belonged to Macrotermes spp. Six mounds of dominant species (Globitermes sulphureus, Microcerotermes burmanicus, Macrotermes carbonarius, M. gilvus, M. malacensis and Hypotermes obscuriceps) were destructively sampled. The number of termites in the nests ranged from 65 000 to 3 150 000 individuals with the biomass ranging from 185 to 2440 g live weight. The abundance of foraging termites in soil and litter averaged 60 ind./m2.The total abundance of Macrotermes species alone could conservatively be estimated as 2.5 million individuals and 20.5 kg live weight per hectare. Four species dominating in the studied habitats (M. carbonarius, M. gilvus, M. malaccensis, and H. obscuriceps) belong to active litter decomposers.  相似文献   

12.
Knowledge of the distribution and nutrient values of key resources supporting the survival of wildlife species is integral for an effective conservation planning and management of the species. In the Miombo ecosystem of the Ugalla Game Reserve, African elephants (Loxodonta africana Blumenbach 1797), eat soil, that is geophagy, from certain termite mounds. We mapped that all the geophagic termite mounds are exclusively situated in the flood plain. To understand why soils from some termite mounds are eaten, we collected and analysed soil samples from 10 geophagic termite mounds, seven nongeophagic termite mounds and 13 samples from the surrounding flood plain. Percentage of clay content did not differ significantly among the soil samples. Soils from geophagic termite mounds were richer in mineral elements compared with other soil samples. The results demonstrate that the driver for geophagic behaviour is related to rich mineral element contents found in geophagic termite mounds made of the mineral‐enriching termites (Macrotermes). Thus, geophagic termite mounds play a role in elephant's dietary needs and possibly influence their movement patterns in Ugalla, as the elephants cannot obtain enough minerals from their feeds. Geophagic termite mounds should be protected from potential destructive land uses, such as airstrip construction.  相似文献   

13.
A key aspect of savannah vegetation heterogeneity is mosaics formed by two functional grassland types, bunch grasslands, and grazing lawns. We investigated the role of termites, important ecosystem engineers, in creating high-nutrient patches in the form of grazing lawns. Some of the ways termites can contribute to grazing lawn development is through erosion of soil from aboveground mounds to the surrounding soil surface. This may alter the nutrient status of the surrounding soils. We hypothesize that the importance of this erosion varies with termite genera, depending on feeding strategy and mound type. To test this, we simulated erosion by applying mound soil from three termite genera (Macrotermes, Odontotermes, and Trinervitermes) in both a field experiment and a greenhouse experiment. In the greenhouse experiment, we found soils with the highest macro nutrient levels (formed by Trinervitermes) promoted the quality and biomass of both a lawn (Digitaria longiflora) and a bunch (Sporobolus pyramidalis) grass species. In the field we found that soils with the highest micro nutrient levels (formed by Macrotermes) showed the largest increase in cover of grazing lawn species. By linking the different nutrient availability of the mounds to the development of different grassland states, we conclude that the presence of termite mounds influences grassland mosaics, but that the type of mound plays a crucial role in determining the nature of the effects.  相似文献   

14.
In African savannas, termite mounds usually serve as browsing hotspots for mammals because of their soil fertility. Van der Plas et al., in this issue, describe that browsers avoid the unpalatable, evergreen tree species on mounds of Macrotermes natalensis in a mesic savanna, preferring mainly leguminous species with high leaf N and P concentrations in the matrix. This exception is probably a consequence of the fertile soils of the study area, and highlights the importance of environmental context for assessing ecological interactions.  相似文献   

15.
Objectives: To (1) assess the strength of evidence for the role of termites in vegetation heterogeneity in African savannas, and (2) identify the mechanisms by which termites induce such heterogeneity. Location: African savannas. Methods: We conducted a review of the literature, a meta‐analysis and qualitative systems analysis to identify mechanisms to explain the observed patterns. Results: The review provided evidence for termite‐induced heterogeneity in floristic composition and vegetation patterning in savannas across Africa. Termites induced vegetation heterogeneity directly or indirectly through their nest‐building and foraging activities, associated nutrient cycling and their interaction with mammalian herbivores and fire. The literature reviewed indicated that termite mounds essentially act as islands of fertility, which are responsible for ecosystem‐level spatial heterogeneity in savannas. This was supported by the meta‐analysis, which demonstrated that mounds of Ancistrotermes, Macrotermes, Odontotermes (family Macrotermitinae), Cubitermes (family Termitinae) and Trinervitermes (Nasutitermitinae) are significantly enriched in clay (75%), carbon (16%), total nitrogen (42%), calcium (232%), potassium (306%) and magnesium (154%) compared to the surrounding savanna soil. Conclusions: Termite activity is one of the major factors that induce vegetation patterning in African savannas. The implications of this are discussed and research questions for future studies and modelling efforts are indicated.  相似文献   

16.
Summary Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2–3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha-1) and T. oeconomus (21 mounds ha-1), in Detarium T. geminatus (59 mounds ha-1) and C. curtatus (45 mounds ha-1) and in boval C. curtatus (72 mounds ha-1) and T. geminatus (22 mounds ha-1). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha-1) after only two-three years.  相似文献   

17.
The diversity and abundance of epigeal termite mounds were investigated in response to controlled livestock grazing and annual prescribed fire in a Sudanian savannah-woodland in Tiogo State Forest. Sampling of termite mounds was carried out in 4×4 subplots of 0.25 ha in a split-plot experimental design during the rainy season in 2002. There were two main plots of which one was fenced to exclude livestock grazing and the second exposed to grazing. Each of the main plots included 4 subplots with annual prescribed fire since 1992 and 4 subplots without fire. Data were collected on the number and characteristics of termite mounds. A mean density of 698 mounds ha−1 was recorded. Mounds built by Trinervitermes spp. were the most abundant followed by Cubitermes spp., Macrotermes subhyalinus and M. bellicosus. The large mound-builders Macrotermes spp. dominated the community interms of basal area (96% of the total) and above-ground volume (99%). The diversity of mound types was notaffected by livestock grazing and annual early prescribed fire (P>0.05). There was no statistical effect of livestock grazing on mound density, whereas a strong depressive effect of annual fire was observed for Trinervitermes spp. mound density (P=0.012). In this ecosystem, annual prescribed fire appeared to be the major determinant for termite mound abundance. Received 2 February 2007; revised 23 October 2007 and 21 January 2008; accepted 22 Feburary 2008.  相似文献   

18.
The rehabilitation of vegetation on structurally crusted soils by triggering termite activity through mulch was studied on three soil types in northern Burkina Faso, West Africa. A split-plot design was used in a fenced environment for the experiment. Insecticide (Dieldrin) was used at a rate of 500 g a.i. (active ingredient)/ha to create nontermite and termite plots. Three mulch types consisting of straw (Pennisetum pedicellatum), woody material (Pterocarpus lucens), and a composite mulch (straw and woody material) applied at a rate of 3, 6, and 4 tons/ha, respectively, were used to trigger termite activity. The grasses and woody species on the plots were surveyed. Nontermite plots responded weakly to mulch treatments, but even in the first year vegetation established on termite + mulch plots. Termite activity resulted in the increase of plant cover, plant species number, phytomass production, and rainfall use efficiency. Infiltrated water use efficiency and plant diversity were not statistically different among treatments during the first 2 years but were in the third. Woody species established only on termite plots. The three types of mulch plots showed greater vegetation development than bare plots, which remained bare throughout the experiment. Analysis of the termite and mulch interaction indicated that mulch plots without termites did not perform better than bare plots, especially in the case of woody plant regeneration. Vegetation rehabilitation was best with composite and straw mulches with termites, followed by woody mulch with termites; it was worst on bare plots.  相似文献   

19.
Woody encroachment can lead to a complete switch from open habitats to dense thickets, and has the potential to greatly alter the biodiversity and ecological functioning of grassy ecosystems across the globe. Plant litter decomposition is a critical ecosystem process fundamental to nutrient cycling and global carbon dynamics, yet little is known about how woody encroachment might alter this process. We compared grass decay rates of heavily encroached areas with adjacent nonencroached open areas in a semi‐arid South African savanna using litterbags that allowed or excluded invertebrates. We also assessed the effect of woody encroachment on the activity of termites— dominant decomposer organisms in savanna systems. We found a significant reduction in decomposition rates within encroached areas, with litter taking twice as long to decay compared with open savanna areas. Moreover, invertebrates were more influential on grass decomposition in open areas and termite activity was substantially lower in encroached areas, particularly during the dry season when activity levels were reduced to almost zero. Our results suggest that woody encroachment created an unfavourable environment for invertebrates, and termites in particular, leading to decreased decomposition rates in these areas. We provide the first quantification of woody encroachment altering the functioning of African savanna ecosystems through the slowing of aboveground plant decomposition. Woody encroachment is intensifying across the globe, and our results suggest that substantial changes to the carbon balance and biodiversity of grassy biomes could occur.  相似文献   

20.
Summary Tropical forestry is influenced by termites in widely differing ways.Large mounds constructed byMacrotermes in Africa and Asia are ecological factors which influence the natural regeneration of forests and the vegetation patterns of savanna woodlands and grasslands.Economic losses in timber caused by termite attack on mature trees are restricted to those areas in Australia, Asia and Central America where particular species ofCoptotermes are present.Afforestation withEucalyptus in less humid areas of Africa, India and South America has been greatly facilitated by the use of organochlorine insecticides to protect seedlings and saplings from attack by ground-dwelling termites.
Zusammenfassung Für die tropische Forstwirtschaft ist eine Reihe von Termitenarten in unterschiedlicher Weise bedeutsam.Dis grossen Termitenhügel vonMacrotermes sind in Afrika und Asien ökologisch von grosser Wichtigkeit, indem sie die Regeneration des Waldes und die Vegetationsverteilung in Trockensavannen und Grasland beeinflussen.Wirtschaftliche Holzschäden durch Termitenangriff auf stehende Waldbäume beschränken sich in Australien, Asien und Zentralamerika auf solche Gebiete, in denen best-immteCoptotermes-Arten vorkommen.Die Aufforstung mit Eucalyptusarten in Afrika, Indien und Südamerika ist wesentlich erleichtert worden, seitdem man dazu übergegangen ist, die Sämlinge und Jungbäumchen durch verschiedene organischsynthetische-Boden-Insektizide zu schützen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号