首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dietary restriction (DR) is one of the main experimental paradigms to investigate the mechanisms that determine lifespan and aging. Yet, the exact nutritional parameters responsible for DR remain unclear. Recently, the advent of the geometric framework of nutrition (GF) has refocussed interest from calories to dietary macronutrients. However, GF experiments focus on invertebrates, with the importance of macronutrients in vertebrates still widely debated. This has led to the suggestion of a fundamental difference in the mode of action of DR between vertebrates and invertebrates, questioning the suggestion of an evolutionarily conserved mechanism. The use of dietary dilution rather than restriction in GF studies makes comparison with traditional DR studies difficult. Here, using a novel nonmodel vertebrate system (the stickleback fish, Gasterosteus aculeatus), we test the effect of macronutrient versus calorie intake on key fitness‐related traits, both using the GF and avoiding dietary dilution. We find that the intake of macronutrients rather than calories determines both mortality risk and reproduction. Male mortality risk was lowest on intermediate lipid intakes, and female risk was generally reduced by low protein intakes. The effect of macronutrient intake on reproduction was similar between the sexes, with high protein intakes maximizing reproduction. Our results provide, to our knowledge, the first evidence that macronutrient, not caloric, intake predicts changes in mortality and reproduction in the absence of dietary dilution. This supports the suggestion of evolutionary conservation in the effect of diet on lifespan, but via variation in macronutrient intake rather than calories.  相似文献   

2.
Phosphorus has been identified as an important determinant of nutrition-related biological variation. The macronutrients protein (P) and carbohydrates (C), both alone and interactively, are known to affect animal performance. No study, however, has investigated the importance of phosphorus relative to dietary protein or carbohydrates, or the interactive effects of phosphorus with these macronutrients, on fitness-related traits in animals. We used a nutritional geometry framework to address this question in adult field crickets (Gryllus veletis). Our results showed that lifespan, weight gain, acoustic mate signalling and egg production were maximized on diets with different P : C ratios, that phosphorus did not positively affect any of these fitness traits, and that males and females had different optimal macronutrient intake ratios for reproductive performance. When given a choice, crickets selected diets that maximized both lifespan and reproductive performance by preferentially eating diets with low P : C ratios, and females selected diets with a higher P : C ratio than males. Conversely, phosphorus intake was not regulated. Overall, our findings highlight the importance of disentangling the influences of different nutrients, and of quantifying both their individual and interactive effects, on animal fitness traits, so as to gain a more integrative understanding of their nutritional ecology.  相似文献   

3.
The use of chemically defined artificial diets has allowed researchers to examine questions within nutritional ecology about how macronutrients affect life‐history traits and resource‐based trade‐offs. Using a chemically defined diet, it is possible to manipulate both the total nutritional content and the ratio of macronutrients (i.e., proteins, carbohydrates, or lipids) within the diet. Studies using the geometric framework have made use of these diets to examine lifespan, fecundity, and immune responses. Here, we develop an artificial diet suitable for rearing lepidopteran larvae. We created diets with three proportions of non‐nutritive material (30, 50, and 70% indigestible cellulose) relative to protein and carbohydrate macronutrients, and compared these to standard wheat bran laboratory diet. We then examined the effects of variable nutrient content on lifespan and development time in Plodia interpunctella Hübner (Lepidoptera: Pyralidae). The artificial diets supported development (almost) as well as bran‐based laboratory diets. Total nutrient content affected development time: females that fed on the diet with the highest nutrient content took the longest time to reach eclosion. We also found evidence to support dietary restriction, with larvae receiving the fewest nutrients having the longest lifespan as adults. These findings are indicative of the usefulness of this diet as a tool to further investigate the effects of nutrient content and macronutrient imbalance on resource‐based trade‐offs and life‐history traits.  相似文献   

4.
Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density of grizzly bears in this ecosystem.  相似文献   

5.
1. Omnivores by definition eat both plants and animals. However, little is known about how diet macronutrient content affects omnivore performance, or the extent to which they can regulate macronutrient intake. We assessed these questions using the salt marsh katydid, Conocephalus spartinae Fox (Tettigoniidae). 2. In our first experiment we used artificial diets with different protein–carbohydrate ratios to assess the effects of diet quality on survival, growth, and lipid accumulation. We found that diets with a high protein–carbohydrate ratio negatively affected Conocephalus survival. Among surviving individuals growth was not significantly different across the treatments, but lipid content decreased significantly as the protein–carbohydrate ratio of diets increased. 3. In a second experiment we explored the ability of Conocephalus to regulate their protein–carbohydrate intake. Results revealed that Conocephalus did not feed randomly when presented with two nutritionally complementary foods. A detailed analysis of their protein–carbohydrate intake revealed selection for a protein‐biased diet, but a lack of tight regulate of protein–carbohydrate intake. 4. We discuss how key macronutrients can limit omnivores, and how nutritional flexibility may enable omnivores to persist in nutritionally heterogeneous environments.  相似文献   

6.
Objective: The Protein‐Leverage Hypothesis proposes that humans regulate their intake of macronutrients and that protein intake is prioritized over fat and carbohydrate intake, causing excess energy ingestion when diets contain low %protein. Here we test in a model animal, the mouse: (i) the extent to which intakes of protein and carbohydrate are regulated; (ii) if protein intake has priority over carbohydrates so that unbalanced foods low in %protein leads to increased energy intake; and (iii) how such variations in energy intake are converted into growth and storage. Methods and Procedures: We fed mice one of five isocaloric foods having different protein to carbohydrate composition, or a combination of two of these foods (N = 15). Nutrient intake and corresponding growth in lean body mass and lipid mass were measured. Data were analyzed using a geometric approach for analyzing intake of multiple nutrients. Results: (i) Mice fed different combinations of complementary foods regulated their intake of protein and carbohydrate toward a relatively well‐defined intake target. (ii) When mice were offered diets with fixed protein to carbohydrate ratio, they regulated the intake of protein more strongly than carbohydrate. This protein‐leverage resulted in higher energy consumption when diets had lower %protein and led to increased lipid storage in mice fed the diet containing the lowest %protein. Discussion: Although the protein‐leverage in mice was less than what has been proposed for humans, energy intakes were clearly higher on diets containing low %protein. This result indicates that tight protein regulation can be responsible for excess energy ingestion and higher fat deposition when the diet contains low %protein.  相似文献   

7.
We combine a recently developed framework for describing dietary generalism with compositional data analysis to examine patterns of omnivory in a large widely distributed mammal. Using the brown bear (Ursus arctos) as a model species, we collected and analyzed data from the literature to estimate the proportions of macronutrients (protein, carbohydrate, and lipid) in the diets of bear populations. Across their range, bears consumed a diversity of foods that resulted in annual population diets that varied in macronutrient proportions, suggesting a wide fundamental macronutrient niche. The variance matrix of pairwise macronutrient log‐ratios indicated that the most variable macronutrient among diets was carbohydrate, while protein and lipid were more proportional or codependent (i.e., relatively more constant log‐ratios). Populations that consumed anthropogenic foods, such agricultural crops and supplementary feed (e.g., corn), had a higher geometric mean proportion of carbohydrate, and lower proportion of protein, in annual diets. Seasonally, mean diets were lower in protein and higher in carbohydrate, during autumn compared to spring. Populations with anthropogenic subsidies, however, had higher mean proportions of carbohydrate and lower protein, across seasons compared to populations with natural diets. Proportions of macronutrients similar to those selected in experiments by captive brown bears, and which optimized primarily fat mass gain, were observed among hyperphagic prehibernation autumn diets. However, the majority of these were from populations consuming anthropogenic foods, while diets of natural populations were more variable and typically higher in protein. Some anthropogenic diets were close to the proportions selected by captive bears during summer. Our results suggest that omnivory in brown bears is a functional adaptation enabling them to occupy a diverse range of habitats and tolerate variation in the nutritional composition and availability of food resources. Furthermore, we show that populations consuming human‐sourced foods have different dietary macronutrient proportions relative to populations with natural diets.  相似文献   

8.
Abstract The capacity to self‐select an optimal balance of macronutrients (protein and carbohydrate) is studied in two populations of Melanoplus sanguinipes F. (Orthoptera: Acrididae). One population derives from the subarctic (interior of Alaska) and the other from the temperate zone (Idaho, U.S.A.). Over the duration of the fourth and fifth stadia, Alaskan grasshoppers consistently self‐select a diet centred on a 0.90 ratio of protein : carbohydrate, whereas protein and carbohydrate intake by the Idaho grasshoppers is contingent on the particular food choices presented to them. When restricted to imbalanced diets, the Alaskan grasshoppers develop more rapidly than the Idaho grasshoppers, regardless of diet composition. The Idaho grasshoppers also have a greater amount of lipid than the Alaskan grasshoppers across all diets. Performance measures (body mass, survival, developmental times) are more sensitive to dietary imbalances in the Alaskan grasshoppers than in the Idaho grasshoppers. When fed diets with low, but balanced, proportions of protein and carbohydrate, grasshoppers of both populations are able to increase consumption to compensate for the low concentration of nutrients. The results suggest that demographic responses of insects to changes in host plant quality, such as may result from climate change, may differ among populations within a species.  相似文献   

9.
The effects of macronutrient balance on nutrient intake and utilization were examined in Manduca sexta larvae parasitized by Cotesia congregata. Insects fed an artificial diet having constant total macronutrient, but with varied ratios of protein and carbohydrate, with altered diet consumption in response to excesses and deficiencies of the individual macronutrients. Bivariate plots of protein and carbohydrate consumption for non-parasitized larvae demonstrated a curvilinear relationship between points of nutrient intake for the various diets, and the larvae grew best on carbohydrate-biased diets. The relationship was linear for parasitized larvae with the growth uniform across diets. On protein-biased diets, the larvae regulated the nitrogen content, containing similar amounts of nitrogen regardless of consumption. Efficiency of nitrogen conversion in non-parasitized larvae was greatest on carbohydrate-biased diets, while nitrogen conversion by parasitized larvae was greatest with intermediate nutrient ratios. Accounting for carbohydrate consumption, the lipid content decreased as dietary carbohydrate increased, but parasitized larvae contained significantly less lipid. The total biomass of parasites developing in individual host larvae was positively correlated with host protein consumption, but the individual parasites were similar in size. Parasitism influences host nutrient consumption in a manner that achieves uniform host growth under diverse nutritional regimes, thereby constraining blood nutrient concentrations within limits suitable for parasite growth and development.  相似文献   

10.
Effects of varying dietary protein intake on serum free amino acid (FAA) concentrations were studied in harbor seals (Phoca vitulina) fed two different prey fish diets: either exclusively low-fat, high-protein walleye pollock (Theragra chalcogramma) or high-fat, relatively high-energy-density Pacific herring (Clupea pallasi). Significant differences in FAA concentrations and patterns were observed between the two diets. All essential amino acids (EAA), except methionine and phenylalanine, and two nonessential amino acids (NEAA), glycine and tyrosine, decreased when the diet was switched from herring to pollock and increased on switching back to herring. Both total EAA concentrations and EAA : NEAA ratios decreased with the elevated protein intake typical of a low-fat pollock diet, indicating an inverse correlation between EAA concentrations and dietary protein intake levels. We propose that differing dietary protein intake, caused by differences in macronutrient composition of the two prey fish species, induced a change in protein metabolism that was reflected in blood-circulating amino acids. These findings suggest that surveys of amino acid profiles may be useful to partially determine the protein metabolic status of harbor seals.  相似文献   

11.
We investigate how the black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae) responds to dietary protein (P) and carbohydrate (C) contents and the P:C ratio in terms of both immature and adult life‐history traits, as well as effects on larval body composition. Nine chicken‐feed based diets varying in their P:C ratio are formulated. We test three protein concentrations (10%, 17% and 24%) and three carbohydrate concentrations (35%, 45% and 55%) and their combinations. All nine diets support the complete development and reproduction of this species. Survival is high on all diets. Development time, larval yield, larval crude fat and egg yield are more influenced by P and C contents than by the P:C ratio. Low contents result in a shorter development time. Larval yield is higher on diets with higher C‐contents. Pupal development is faster on a low dietary P‐content for all three C‐contents. Egg yield only increases when P‐content increases, although it also varies with the P:C ratio. Larval crude protein content is similar on all nine diets but increases when C‐content is low (10%) in P10 and P17. Larval crude fat content is high at P24‐diets irrespective of C‐content. We conclude that a high macronutrient content combined with a low P:C ratio positively affects H. illucens performance. The diet P17:C55 supports the highest larval and adult performance and results in a high larval body protein content and an intermediate crude fat content.  相似文献   

12.
The commercial production of Orius spp. (Hemiptera: Anthocoridae), including Orius majusculus (Reuter), relies on the use of eggs of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) as rearing diet. However, E. kuehniella eggs have become an expensive fodder thus increasing the price of these key biological control agents. The use of artificial diets potentially decreases the production costs. In this regard, establishing a link between dietary composition and fitness could advance the development of an optimum alternative artificial diet for these predatory insects. The aim of the current study was to test the effect of six artificial diets with different macronutrient composition on the development and reproductive fitness of O. majusculus when compared with the effect of E. kuehniella eggs. In general, nymphal survival was not affected by diet, whereas development was slightly delayed on artificial diets. However, female body mass and fecundity were significantly lower on all of the artificial diets compared with the E. kuehniella eggs diet, suggesting that artificial diets were of inferior quality. Within artificial diets, females fed the viable diet with highest content in lipid laid more eggs than those raised on the most protein-rich diets. We found there was some variation in carcass composition between the O. majusculus fed the various diets, but these variations did not match the differences found in the fitness parameters measured.  相似文献   

13.
The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have different digestible energy intakes (DEI) but similar total heat production. Four iso-energetic diets (2 × 2 factorial design) were formulated having a contrast in i) the ratio of protein to energy (P/E): high (H(P/E)) vs. low (L(P/E)) and ii) the type of non-protein energy (NPE) source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank) of rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions. Feed intake (FI), DEI (kJ kg(-0.8) d(-1)) and growth (g kg(-0.8) d(-1)) of trout were affected by the interaction between P/E ratio and NPE source of the diet (P<0.05). Regardless of dietary P/E ratio, the inclusion of carbohydrate compared to fat as main NPE source reduced DEI and growth of trout by ~20%. The diet-induced differences in FI and DEI show that trout did not compensate for the dietary differences in digestible energy or digestible protein contents. Further, changes in body fat store and plasma glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the diet composition, heat production of trout did not differ (P>0.05). Our data suggest that the control of DEI in trout might be a function of heat production, which in turn might reflect a physiological limit related with oxidative metabolism.  相似文献   

14.
15.
A factorial experiment was designed to examine the effect on compensatory growth (CG) of Nile tilapia Oreochromis niloticus fed diets containing different protein and lipid levels under normal and temporally restricted feeding regimes. Four diets were formulated to contain either 30% or 36% crude protein, and 5% or 11% crude lipid. Triplicate replicates of each treatment were assigned to 24 150‐L tanks (20 fish/tank density). Fish (mean initial weight ± SD = 8.79 ± 0.34 g) were then fed either the normal feeding regime (thrice daily to apparent satiation) or the restricted regime (1 day feed deprivation followed by 3 days of feeding to apparent satiation) over a 44‐days study period. Fish receiving a diet under the restricted regime achieved weight gains (WG) comparable to fish consuming the diet containing 30% protein and 5% lipids under the normal feeding regime. Fish maintained on the restricted feeding regime exhibited reduced feed intake (FI), WG, feed efficiency ratio (FE), protein efficiency rate (PER) and hepatosomatic index versus fish on the normal feeding regime, except WG in fish fed the diet with 30% protein and 5% lipids. However, the resultant FI (85%~94%) was higher than the excepted 75% intake when fish were subjected to the restricted regime. Feeding 11% lipid diets led to improved FI, WG, FE, and PER compared to feeding the 5% lipid diets. Increased FI, WG, and FE, but reduced PER were observed in fish fed with 36% protein versus fish fed 30% protein. Fish receiving the 36% protein diets had lower whole‐body moisture and ash contents, but elevated whole‐body protein and lipid contents compared to those receiving the 30% protein diets. Whole‐body moisture contents were lower, but whole‐body protein, lipid and ash contents were higher in fish fed 11% lipid diets than in fish fed 5% lipid diets. There was an increase in whole‐body moisture content, but a decrease in protein and lipid content in response to the restricted feeding regime. Ash content was not affected by the feeding regime. The present study shows that Nile tilapia fed diets subjected to a restricted feeding regime exhibited growth comparable to those fed the diet at 30% protein and 5% lipid levels under a normal feeding regime. This positive effect was more pronounced in diets at a high protein level or in a combination of high protein and lipid levels.  相似文献   

16.
The replacement of the finite and costly resource fish oil is an important task for aquaculture nutrition. A promising approach could be the use of plant bioactives that may have the potential to influence the metabolism and the synthesis of n-3 long chain polyunsaturated fatty acids, especially EPA (20:5n-3) and DHA (22:6n-3). In this study, the two phytochemicals resveratrol (RV) and genistein (G) were investigated for their effects on fish growth, nutrient utilization and body nutrient composition alongside their effects on whole body fatty acid (FA) composition. In a feeding trial lasting 8 weeks, rainbow trout (initial BW: 81.4±0.5 g) were held in a recirculating aquaculture system and fed six experimental diets with varying fish oil levels as plain variants or supplemented with 0.3% of dry matter (DM) of either RV or G. The six diets were as follows: diet F4 had 4% DM fish oil, diet F0 had 0% DM fish oil, diets F4+RV, F4+G, F0+RV and F0+G were equal to the diets F4 and F0, respectively, and supplemented with the phytochemicals RV and G. The feeding of the F0+RV diet resulted in reduced feed intake, growth rate and slightly reduced whole body lipid levels. At the same time, the amount of polyunsaturated FA and the n-3/n-6 ratio were significantly increased in whole body homogenates of rainbow trout fed diet F0+RV in comparison to the F0 control. The feeding of the F0+G diet led to reduced feed intake, slightly increased protein utilization but did not significantly affect the whole body FA composition. Overall, feeding the fish oil-free diet supplemented with the phytochemicals resulted in more pronounced effects on fish performance and FA composition than the single factors per se (dietary fish oil level or phytochemical). Present data indicate that G might not be of profitable use for trout nutrition. In terms of FA composition, RV could be a potentially useful complement for fish oil. However, the impairment of growth and performance parameters as observed in the present study discourages its use in trout diets.  相似文献   

17.
Carbohydrates and protein comprise two of the major macronutrients and many animals regulate their dietary intake of both. In the field, the carbohydrate (C) to protein (P) intake of Mormon crickets Anabrus simplex Haldeman (Orthoptera: Tettigoniidae) is indicative of a nutritional imbalance affecting both migration and immunity. In the present study, dietary choice experiments in the laboratory are used to investigate the preferences of Mormon cricket nymphs and adults for C and P. Diets of differing C : P ratios and amounts are presented in pairs to permit Mormon crickets to reach an intake target of C : P from four unique starting points. After the last pair of diets is removed, phenoloxidase (PO) and anti‐bacterial activity are assayed. Both males and females at the adult and nymphal stages show a strong preference for the diet richest in macronutrients, with an equal preference for C or P. When given a choice between a high C diet or a high P diet, Mormon crickets select both at random, balancing their daily intake of C and P. Weight gain is dependent on the mass of P consumed, with a conversion factor greater than four times that of C consumed. As predicted, Mormon cricket nymphs and adults that consume more P have higher titres of total phenoloxidase and, in addition, lysozyme‐like anti‐bacterial activity is independent of dietary treatment. In nature, omnivores might consume an excess of one macronutrient because they often find the other through active searching of their local habitat. However, environmental change and interspecific or intraspecific competition can challenge the ability of an organism to encounter the required nutrients on a local scale, contributing to long‐distance migratory behaviours.  相似文献   

18.
设计5个饲料蛋白水平(30%、33%、36%、39%和42%)和2个脂肪水平(6%和9%)的52的因子试验,配制10种试验饲料,分别饲喂10组三重复平均体重为95.5 g的二龄青鱼70d,以探讨不同蛋白和脂肪水平对青鱼生长和体组成等的影响。结果表明: 鱼体增重随饲料蛋白水平从30%提高到39%不断增加(P0.05),进一步提高饲料蛋白水平至42%时,鱼体增重则不再显著变化(P0.05);饲料系数随饲料蛋白水平从30%提高到39%而不断降低(P0.05),进一步提高饲料蛋白水平至42%时,也不再显著变化;蛋白质效率和蛋白保留率随饲料蛋白水平呈下降趋势;以鱼体增重为指标,经折线模型进行回归分析求得适宜的饲料蛋白水平为占干饲料的40%。饲料蛋白、脂肪水平及其交互作用对的试验鱼成活率均无显著差异(P0.05)。饲料脂肪水平、饲料蛋白与脂肪的交互作用对鱼体增重、饲料系数、摄食率和蛋白质效率也均无显著影响(P0.05)。摄食蛋白水平为30%和33%饲料的青鱼与摄食蛋白水平36%-42%饲料的青鱼相比,有较低的水分和较高全鱼脂肪(P0.05)。青鱼脏体比和肌肉粗脂肪含量均随着饲料中蛋白水平的提高呈降低的趋势。摄食脂肪水平为9%的饲料的青鱼较摄食脂肪水平为6%的饲料的青鱼,有较高脏体比、全鱼脂肪含量和肌肉粗脂肪含量(P0.05)。上述结果说明,青鱼摄食低蛋白和高脂肪的饲料造成过多的体脂积累。在试验条件下,青鱼大规格鱼种饲养阶段适宜的饲料蛋白和脂肪水平分别为占干饲料的40%和6%。    相似文献   

19.
In this paper, we show the results from four different experiments in which sea bass, maintained under laboratory conditions, could choose between two or three different diets through self-feeders, which gradually increased the complexity and potential range of selection, to design their own diet in accordance with their requirements. At first, sea bass were allowed to select between two complete diets differing in the proportion of protein (52-58%): this showed their capacity to distinguish between two diets made of the same ingredients. Next, two incomplete diets, containing a fixed amount of protein (56%) and lacking either fat or carbohydrate, were made available. Three mixed diets made up of pairs of macronutrients (protein-carbohydrate, protein-fat or fat-carbohydrate) were tested in the next experiment and, finally, three diets containing only one macronutrient (protein fat or carbohydrate) were made available to fish. Taking into account selection made by the fish in the first three experiments, in which macronutrient selection was statistically different, protein was the main macronutrient chosen by fish (278.15 kJ/kgBW/day, on average), followed by fat and carbohydrate (162.85 and 64.56 kJ/kgBW/day, respectively). In conclusion, the results reveal the ability of sea bass to select an appropriate diet from experimental diets containing two or three macronutrients and suggest that the proposed methodology is a powerful tool for studying the differing nutritional needs of different species of fish.  相似文献   

20.
To meet nutritional needs, primates adjust their diets in response to local habitat differences, though whether these dietary modifications translate to changes in dietary nutrient intake is unknown. A previous study of two populations of the mountain gorilla (MG: Gorilla beringei) found no evidence for intraspecific variation in the nutrient composition of their diets, despite ecological and dietary differences between sites. One potential explanation is that nutritional variability in primate diets requires greater ecological divergence than what was captured between MG sites, underpinning environmental differences in the nutrient quality of plant foods. To test whether Gorilla exhibits interspecific variation in dietary composition and nutrient intake, we studied the composition and macronutrients of the western gorilla (WG: Gorilla gorilla) staple diets and compared them with published data from the two MG populations. We recorded feeding time and food intake of four adult female WGs from one habituated group over a period of 11 months (December 2004–October 2005) at the Mondika Research Center, Republic of Congo, allowing for assessment of seasonal patterns of nutrient intake. Staple diets of WGs and MGs diverged in their dietary and macronutrient composition. Compared to MGs, the staple diet of WGs (by intake) contained higher proportions of fruit (43%) and leaf (12%) and a lower proportion of herb (39%), resulting in a higher intake of total nonstructural carbohydrate and fiber and a lower intake of crude protein. Staple gorilla fruits and herbs differed in nutrient quality between sites. Gorillas exhibit nutritional flexibility that reflects ecological variation in the nutrient quality of plant foods. Since dietary quality typically affects rates of growth and reproduction in primates, our results suggest that interspecific differences in nutrient intake and food quality may shape differences in gorilla nutrient balancing and female life history strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号