共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Turbo torquatus (hereafter Turbo) were abundant and patchily distributed, especially in algal dominated habitats in shallow water (less then 10 metres) on rocky reefs in central New South Wales, Australia. Although the assemblage of algae was similar in barrens with and without crevices, Turbo were most abundant in crevices, suggesting that shelter was important. Experimental removal of the kelp canopy resulted in a great decrease in the number of Turbo. This was despite cleared patches containing more filamentous food algae, further highlighting the importance of shelter. The density of Turbo in kelp forests ranged from six to seven per square metre in times of abundance and less then one per square metre at other times over a 12‐year period. Variation in the resource base (i.e. food algae and kelp cover) was strongly linked to the abundance of Turbo. Abundance of Turbo was lowest when the density of adult kelp was low (less than 14 plants per square metre). The condition of kelp was severely affected during the 1997–1998 and 2002 El Niño events and was compromised 2–4 years after each event. These pulse events and related loss of shelter probably contributed to a decline in abundance of Turbo. This model was further supported when Turbo abundance increased with a subsequent increase in the density of kelp. 相似文献
2.
C. Ribeiro† A. J. Almeida‡ R. Araújo M. Biscoito M. Freitas 《Journal of fish biology》2005,67(6):1568-1584
Fish assemblages in Cais do Carvão Bay, Madeira Island, a proposed marine protected area (MPA), were determined from a diver visual census. A total of 32 transect counts were performed. Habitats sampled included sandy bottom, rocky boulders, vertical walls and rocky outcrops. Species richness, diversity, density, trophic structure, size and spatial organization were documented for the fish assemblages. Forty‐four species from 23 families were encountered; 32% belonged to Sparidae (10) and Labridae (four). The greatest species richness (25) was observed in rocky boulder habitat at 10–15 m depth, while the lowest (five) occurred over a deeper sand habitat. The greatest density (760·5 individuals per 100 m2 ) was recorded over rocky outcropping (20–25 m deep), and the lowest of 11·6 individuals per 100 m2 was over a sand bottom at 10–15 m depth. Thalassoma pavo , Abudefduf luridus and Chromis limbata had higher densities on hard bottoms, while Heteroconger longissimus was the most abundant species in sand bottom habitats. No significant differences were detected for all indices calculated among depth intervals for sand and rocky boulder stations. Sand and rock boulder substratum, however, differed significantly for the 10–15 m depth stratum. 相似文献
3.
Euan J. Provost Brendan P. Kelaher Symon A. Dworjanyn Bayden D. Russell Sean D. Connell Giulia Ghedini Bronwyn M. Gillanders WillIAM Figueira Melinda A. Coleman 《Global Change Biology》2017,23(1):353-361
The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate‐driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf‐forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low‐latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat‐forming species to more simple habitats dominated by algal turfs. 相似文献
4.
Dan A. Smale Michael T. Burrows Pippa Moore Nessa O'Connor Stephen J. Hawkins 《Ecology and evolution》2013,3(11):4016-4038
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate‐ and non‐climate‐related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp‐dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field‐based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. 相似文献
5.
Variation in the body morphology of juvenile brown trout Salmo trutta was studied for both wild and hatchery-reared individuals from the same gene pool. The thin-plate spline (TPS) method by pointing landmarks was used to characterize juveniles from their natal environment, the River Kuusinkijoki in eastern Finland, and from wild parents raised in a hatchery environment. Differences were found in the morphometrics of juvenile S. trutta from the two different environments. Wild S. trutta are characterized by a longer head and shorter anterior part of the trunk compared to hatchery S. trutta. Stocked to their natal river with wild S. trutta, the hatchery fish became characterized with more similar morphometrics to their wild counterparts. The characteristics of the body form are explained by the differing environmental conditions in the wild and hatchery. It is concluded that a simple hatchery environment may delay the development of morphological characteristics important in a natural river environment. 相似文献
6.
植物根资源捕获塑性是地下生态学研究的重点之一, 在过去二三十年间有长足的进步。菌根塑性是根资源捕获塑性的重要方面, 但由于研究手段的限制, 目前仅有概念上的探讨。缺乏菌根塑性的根塑性研究至少是不全面的。菌根生物学的迅速发展, 尤其是分子生物学手段的介入, 使对菌根塑性进行深入研究成为可能。该文对外生菌根塑性进行讨论, 在简要介绍了外生菌根的生物学基本知识后, 着重讨论了外生菌根形态塑性和生理塑性的定义与内涵。通过文献综述, 分析讨论了外生菌根塑性的研究现状: 很少有研究聚焦在菌根塑性本身, 现有的材料多为其他研究的隐示或研究结果的引申, 并多在形态塑性方面。外生菌根的生理塑性未见有直接的实验数据。该文还对外生菌根研究中发展的、可用于菌根塑性研究的方法进行了综述。由于外生菌根塑性的复杂性, 对菌根塑性的研究会较植物根本身塑性的研究复杂得多, 问题也会相对复杂, 比如植物和外生菌根菌之间的营养需求关系、植物外生菌根塑性的生态意义、实验方法的缺陷等等。对今后外生菌根塑性研究的方向进行了探讨。 相似文献
7.
Albert G. Locham Boaz Kaunda‐Arara Joseph G. Wakibia Shadrack Muya 《African Journal of Ecology》2015,53(4):560-571
Studies on feeding ecology of fishes are important for understanding ecosystem structure and function. This study tested the hypothesis of diet and niche breath variation in the marbled parrotfish (Leptoscarus vaigiensis) among coral reefs of different protection levels in Kenya. Fish samples were obtained from protected (Malindi and Watamu marine parks), moderately fished (Malindi and Watamu marine reserves) and highly fished (Vipingo and Kanamai) reefs. Total lengths of fish samples were measured and their stomach contents quantified using the point method. Seasonal dietary composition, niche breaths and feeding intensities were compared between the sites using multivariate statistics. Results showed the parrotfish is a predominantly reef macroalgal grazer. Fish from protected sites fed on diverse dietary items compared to those from reserves and highly fished sites. Fish niche breadths differed between sites and seasons. Higher niche breadths occurred in protected sites during the north‐east monsoon, while higher values occurred at fished sites during the south‐east monsoon season. This study, the first of its kind in Kenya and most of the western Indian Ocean, describes feeding in the marbled parrotfish and spatial variation in niche breadth as influenced by fishing pressure, environmental variability and biological interactions. 相似文献
8.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual. 相似文献
9.
Amod M. Zambre Rohan Arthur 《Ethology : formerly Zeitschrift fur Tierpsychologie》2018,124(5):302-310
Because obligate corallivorous butterflyfish feed exclusively on coral polyps, they are particularly sensitive to changes in coral cover and its spatial distribution. To understand how such differences in coral cover influence obligate corallivores, we examined the densities and foraging behavior of Melon butterflyfish Chaetodon trifasciatus across three reefs in the Lakshadweep archipelago. These reefs suffered differential bleaching mortality after the 2010 El Niño Southern Oscillation, resulting in wide variation in coral cover and community composition. Despite these differences, C. trifasciatus were able to persist at similar densities across reefs. However, our analysis of high‐resolution video recordings of multiple focal fish revealed that time budgets, bite rates, and diet selectivity differed significantly. Fish in resource‐poor reefs spent more time moving between coral patches and less time foraging than ones in relatively resource‐rich reefs. We also found that fish in resource‐poor reefs had higher bite rates and were less selective in their foraging. Our results provide novel insights into how obligate corallivores cope with even large differences in resource availability. At a time when we are rapidly losing corals to repeated climate‐induced bleaching events, this flexibility may represent a critical mechanism that enables persistence of obligate corallivores in resource‐poor reefs, even if it does not guarantee longer‐term survival. 相似文献
10.
The status of golden loaches (genus Sabanejewia) in the region of Central Europe and Balkans is still ambiguous. The greatest controversy is caused by species Sabanejewia balcanica and S. bulgarica. Both species are characterized by a wide spectrum of morphological variability and overlapping of distinguishing features, which then lead to difficulties in their determination. Previous phylogenetic studies aimed on the resolving of their taxonomic status did not include samples from their type localities and so led to a lack of their true distribution in this region. Therefore, the main aim of this study was to identify taxonomic status of golden loaches populations in the region of the middle Danube basin and adjacent areas on the model territory of Slovakia. For this purpose, we used novelty approach (morphological, molecular, and microhabitat) and we also included the missing samples from the type localities of both species. Based on mtDNA all the Slovakian samples reflected haplotype richness revealed on the type locality of S. bulgarica, although the genetic distances from other representatives of the genus Sabanejewia occurring are not significant. Within the morphology, we have revealed a great measure of variability in studied populations, which is largely caused by different habitat conditions and thus representing a phenotypic plasticity of these fish. 相似文献
11.
12.
Abstract Many ectothermic animals are subject to fluctuating environmental temperatures during incubation as well as post‐birth. Numerous studies examined the effects of incubation temperature or ambient temperature on various aspects of offspring phenotype. We investigated whether incubation temperature and ambient temperature have an interactive effect on offspring performance. Our study animal, the ectothermic vertebrate Lampropholis delicata (common garden skink; De Vis 1888), experiences fluctuating environmental temperatures caused by differential invasion of an exotic plant Vinca major (blue periwinkle). In the laboratory, eggs from wild‐caught females were assigned to different incubation temperatures that mimicked variation in natural nests. The feeding performance and digestion time of each hatchling was tested at ambient temperatures that represented environments invaded to different degrees by periwinkle. Incubation and ambient temperature interacted to affect a lizard's mobility, the time that it took to capture, subdue and handle a prey, and the number of handling ‘errors’ that it made while foraging. For a number of these characteristics, incubation‐induced changes to a lizard's mass significantly affected this relationship. Irrespective of size, no interaction effect was found for digestion time: lizards digested food faster at warmer temperatures, regardless of incubation temperature. Thus, temperatures experienced during incubation may alter an animal's phenotype so that the surrounding thermal environment differentially affects aspects of feeding performance. Our results also demonstrate that incubation environment can induce changes to morphology and behaviour that carry over into a lizard's early life, and that in some cases these differences in phenotype interact to affect performance. We suggest that the immediate removal of exotic plants as part of a weed control strategy could have important implications for the foraging performance, and presumably fitness, of ectothermic animals. 相似文献
13.
根茎在植物的无性繁殖、克隆分株间信息交流和物质交换、预测资源斑块的质量等方面具有重要意义,并且根茎克隆植物的研究涉及生物入侵、全球变化等诸多生态学前沿领域。作为一种重要的克隆植物类型,根茎克隆植物在资源异质性生境中表现出特有的适应方式,这种方式可以通过形态可塑性、觅食行为、生理整合以及适合度来具体表征。着眼于根茎克隆植物,总结和分析了国内外近年来的研究案例,并对形态可塑性起源与多样性的限制假说和适应假说、觅食行为中的强度觅食和广度觅食策略、克隆分株间间隔子保持和断裂的利益权衡等热点内容进行了讨论。最后联系生态学学科前沿,提出了本领域在未来需要重视的研究方向。 相似文献
14.
Frederik Leliaert Sofie D'hondt Lennert Tyberghein Heroen Verbruggen Olivier De Clerck 《Phycological Research》2011,59(2):91-97
The green seaweed genus Chaetomorpha is characterized by unbranched filaments. Molecular phylogenetic data indicate that Chaetomorpha forms a clade that is nested in a paraphyletic assemblage of branched species (Cladophora). It follows that the unbranched condition is evolutionarily conserved and likely evolved early in the evolution of this clade. In this study we show that under laboratory culture conditions, the filaments of C. antennina frequently produce lateral branches, similar to Cladophora. Our results thus indicate that the unbranched thallus architecture is not entirely genetically constrained, but at least in part subject to morphological plasticity. Additionally, culture observations of C. antennina allowed a detailed study of rhizoidal development, which seems unique among Cladophorales. 相似文献
15.
IGNACIO M. SOTO ESTEBAN R. HASSON MAURA H. MANFRIN 《Biological journal of the Linnean Society. Linnean Society of London》2008,95(4):655-665
A central issue in evolutionary biology is to understand the mechanisms promoting morphological evolution during speciation. In a previous study, we showed that the Neotropical cactophilic sibling species Drosophila gouveai and Drosophila antonietae can be reared in media prepared with their presumptive natural host plants (Pilosocereus machrisis and Cereus hildmaniannus) and that egg to adult viability is not independent of the cactus host. In the present study, we investigate the effects of ecological and genetic factors on interspecific divergence in wing morphology, in relation to the pattern of wing venation and phenotypic plasticity in D. gouveai and D. antonietae, by means of the comparative analysis of isofemale lines reared in the two cactus hosts. The species differed significantly in wing size and shape, although specific differences were mainly localized in a particular portion of the wing. We detected significant variation in form among lines, which was not independent of the breeding cactus, suggesting the presence of genetic variation for phenotypic plasticity and wing shape variation in both species. We discuss the results considering the plausible role of host plant use in the evolutionary history of cactophilic Drosophila inhabiting the arid zones of South America. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 655–665. 相似文献
16.
The reproductive characteristics of Oreochromis niloticus females were studied in two large hydroelectric dams and 6 small agropastoral reservoirs of Côte d'Ivoire, selected for their diversity of environmental conditions and sizes (6 to 80000 ha). Comparative analysis of age and size at maturity revealed large differences between the populations with early maturity, late maturity, and intermediate situations. All the populations matured in their first year, between 5.6 and 10 months. Age and size at maturity were positively correlated with the reservoir area. The range of variation in age at maturity between populations was far greater than that of size at maturity. However, size at maturity also appears to be very plastic as intra-population variations of 2 to 3 cm were found between consecutive years. A comparison of age at maturity for a population in 1994 and 1996 showed that this trait is also likely to vary significantly at the intra-population level. Environmental factors which could potentially affect age and size at maturity are discussed. Growth differences are the probable explanation for the observed patterns of variation between populations. Rapid changes in age and size at maturity at inter or intra-population levels suggest that the observed variations might be explained by differences in environmental variables (phenotypic plasticity) rather than by genetic differences. 相似文献
17.
The extent to which phenotypic plasticity, or the ability of a single genotype to produce different phenotypes in different environments, impedes or promotes genetic divergence has been a matter of debate within evolutionary biology for many decades (see, for example, Ghalambor et al. 2007 ; Pfennig et al. 2010 ). Similarly, the role of evolution in shaping phenotypic plasticity remains poorly understood (Pigliucci 2005 ). In this issue of Molecular Ecology, Dayan et al. ( 2015 ) provide empirical data relevant to these questions by assessing the extent of plasticity and divergence in the expression levels of 2272 genes in muscle tissue from killifish (genus Fundulus) exposed to different temperatures. F. heteroclitus (Fig. 1 A) and F. grandis are minnows that inhabit estuarine marshes (Fig. 1 B) along the coasts of the Atlantic Ocean and Gulf of Mexico in North America. These habitats undergo large variations in temperature both daily and seasonally, and these fish are known to demonstrate substantial phenotypic plasticity in response to temperature change (e.g. Fangue et al. 2006 ). Furthermore, the range of F. heteroclitus spans a large latitudinal gradient of temperatures, such that northern populations experience temperatures that are on average ~10°C colder than do southern populations (Schulte 2007 ). By comparing gene expression patterns between populations of these fish from different thermal habitats held in the laboratory at three different temperatures, Dayan et al. ( 2015 ) address two important questions regarding the interacting effects of plasticity and evolution: (i) How does phenotypic plasticity affect adaptive divergence? and (ii) How does adaptive divergence affect plasticity? 相似文献
18.
The biological and biochemical effects of temperature on life-history strategy of female bullhead Cottus gobio were investigated. Fish from two populations (Bez Basin, south-east France) experiencing contrasted thermal environments ( i.e . more or less stable) were reared during 4 months at three distinct temperatures (7, 9 or 12° C). Both somatic (soma fresh mass and muscle triglyceride content) and reproductive (gonad fresh mass, fecundity, mean diameter of eggs and gonad triglyceride content) indicators were examined. Mixed models indicated that an increasing temperature had significant negative effects on all life-history indicators except for soma fresh mass. Differences in life-history strategy with regard to muscle and gonad triglyceride contents, however, suggest that populations experiencing more variable thermal environments may be better adapted than others to cope with an increasing temperature. These findings may have important implications for C. gobio populations, within the context of climate warming. 相似文献
19.
Rosemary Lowe-McConnell> 《Environmental Biology of Fishes》1998,53(1):111-115
The efficient collection of fishes from structurally complex environments (e.g., coral reefs, kelp forests) is difficult because conventional collecting methods generally cannot be used and many of the fishes are mobile and active. We describe the design, operation, and application of a diver-propelled net for efficiently collecting many species of benthic fish that reside on coral reefs and on kelp-forested rocky reefs. The overall size of the net and mesh size of the netting can be adjusted according to the size and behavior of targeted species to minimize drag and damage to specimens. Altering these dimensions combined with proper use of the net can result in a high rate of capture success. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
20.
Juvenile common carp Cyprinus carpio were collected from 10 lakes with variable predator abundance over 4 months to evaluate if morphological defences increased with increasing predation risk. Cyprinus carpio dorsal and pectoral spines were longer and body depth was deeper when predators were more abundant, with differences becoming more pronounced from July to October. To determine if morphological plasticity successfully reduced predation risk, prey selection of largemouth bass Micropterus salmoides foraging on deep- and shallow-bodied C. carpio was evaluated in open and vegetated environments. Predators typically selected deep- over shallow-bodied phenotypes in open habitats and neutrally selected both phenotypes in vegetated habitats. When exposed to predators, shallow-bodied C. carpio phenotypes shoaled in open habitat, whereas deep-bodied phenotypes occupied vegetation. Although deep-bodied phenotypes required additional handling time, shallow-bodied phenotypes were more difficult to capture. These results suggest that juvenile C. carpio gradually develop deeper bodies and larger spines as predation risk increases. Morphological defences made it more difficult for predators to consume these prey but resulted in higher vulnerability to predation in some instances. 相似文献