首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habitat heterogeneity might promote the abundance and richness of natural enemies potentially leading to higher top-down pressure on herbivorous insects. Heterogeneous habitats could provide natural enemies with more abundant and alternative resources and a greater variety of micro-habitats. Natural enemies with different searching behaviours, e.g. generalists and specialists, could be affected in different ways by habitat heterogeneity, thus affecting their pressure on herbivorous insects.To understand how top-down pressure on herbivorous insects is promoted by habitat heterogeneity, it is crucial to investigate which parameters contributing to habitat heterogeneity affect not only the abundance and richness but also the searching behaviour of different natural enemies. We investigated the relationship between heterogeneity in forest habitats and the top-down pressure exerted by generalist predators and specialist parasitoids on larvae of the European pine sawfly (Neodiprion sertifer).We used forest stands with endemic or epidemic densities of resident sawfly populations. Within each stand we selected experimental trees to create variation in tree species diversity and density in their surrounding area, i.e. habitat heterogeneity. We found that a higher tree density increased the predation by generalists on sawfly larvae in stands with endemic sawfly densities. Parasitoids were less successful in stands with endemic sawfly densities. Total mortality depended on stand character and the proportion of pine around experimental trees.The explained variation in the response variables by the models is relatively low, indicating that other measures of heterogeneity, like understory vegetation and presence of dead wood could contribute to the observed variation. Also, interference between generalist and specialist enemies could affect the realized mortality pressure. Thus, the effect of tree species diversity in combination with these other measures of heterogeneity needs to be recognized to promote the presence and the activity of natural enemies in managed habitats.  相似文献   

2.
Predation by small mammals is thought to be one of the main regulators of outbreaking sawfly species. It has been suggested that predation may be lower in poor and dryish forests, and this is the reason why outbreaks often begin from this type of environment. We studied experimentally how fertility of the forest site affects cocoon predation experienced by two sawfly species, the common pine sawfly Diprion pini (Linnaeus) and the European pine sawfly Neodiprion sertifer (Geoffroy). We applied a fertilization treatment to selected pine-dominated barren forest sites in Finland, and 2–4 years later monitored predation on the sawfly cocoons in fertilized and control areas. The results did not support the idea that forest fertility was related to cocoon predation. We also could not verify that small mammal abundance was related to fertility of the forest. The most obvious pattern we observed was that the two sawfly species differed dramatically in predation experienced. N. sertifer has its cocoon phase in mid-summer and experienced only moderate predation (37%) whereas D. pini, with its cocoon phase in autumn, suffered from very heavy predation (96%). Our observations suggest that if predation is important in controlling the population dynamics of the species, its impact depends more on the sawfly species and season than on the fertility of the forest site. Received: 1 March 1998 / Accepted: 25 May 1998  相似文献   

3.
1 Predation and parasitism on litter‐buried cocoons of the common pine sawfly Diprion pini (L.) were compared in different forest types with endemic sawfly populations by field exposure of laboratory‐reared cocoons during three consecutive years (1993–1995). 2 The impact of cocoon predation was dependent on season and forest type. The highest predation (up to 95%) was found during autumn in forest stands with a dense understory vegetation. 3 Cocoon parasitism varied between year, season and forest type. The highest parasitoid attack was observed in pure pine forests with more or less barren soils, but did not exceed 24% of exposed cocoons. 4 Cocoons were exposed in small patches. Predators tended to exploit all cocoons of a patch, whereas parasitoids only attacked a few cocoons of a patch. Predation was similar on cocoons placed in the litter and those buried more deeply in the soil, whereas parasitism of soil‐buried cocoons was rare. 5 These results indicate that predators can have a remarkable potential for limiting endemic sawfly densities, if habitat conditions in a forest maintain their population and support their foraging behaviour. A notable effect of parasitoids on sawfly cocoons deposited in the litter is obviously restricted to typical pure and barren pine forests, but may play there a similar role as predation.  相似文献   

4.
  1. Observed lower levels of herbivory in mixed compared with monoculture stands have been hypothesized to depend on top-down forces, through higher predation pressure by natural enemies or through bottom-up mechanisms through plant quality effects on herbivore performance.
  2. In this study, we compared the performance measured as host plant induced mortality, cocoon weight, and predation mortality of the European pine sawfly Neodiprion sertifer (Geoffroy) (Hymenoptera, Diprionidae) in mixed and monoculture forest stands.
  3. We did not observe a difference in host plant induced mortality, cocoon weight, or predation mortality between mixed and monoculture forest stands. We did find an effect of local conditions around each experimental tree on pine sawfly performance. For example, the nitrogen content of pine needles is negatively affected by the proportion of pine around the experimental tree, which in turn increases the survival of sawfly larvae.
  4. The results suggest that local conditions around individual trees are more important for the performance of the European pine sawfly than stand type, i.e. mixed or monoculture plant stands.
  5. We conclude that the ongoing trend for diversification within commercial forestry calls for more research where the effects of both bottom-up and top-down effects are studied at several spatial scales.
  相似文献   

5.
Forest insect pests are one of the major disturbance factors in forest ecosystems and their outbreaks are expected to be more severe under the influence of global warming. Coleopterans are dominant among forest insects and their ecological functions include general detritivores, dead wood feeders, fungivores, herbivores, live wood feeders and predators. Ambrosia and bark beetles contribute to ecological succession of forests and, therefore, ecological functions of forests can be changed in response to their outbreaks. Mountain pine beetle (MPB) outbreaks are the most dramatic example of changes in the ecological functions of forest due to the outbreak of a forest insect pest altered by global warming. Composition of coleopteran species varies with latitude. However, composition of functional groups is consistent with latitude which indicates that resources available to beetles are consistent. In coleopteran communities, ambrosia and bark beetles can become dominant due to increases of dead or stressed trees due to the warming climate. This can also induce changes in the ecological functions of coleopterans, i.e. selective force to displace trees that have lower ecological fitness due to temperature increase. Therefore, recent increases in the density ambrosia and bark beetles offer a chance to study ecological processes in forests under the influence of global warming.  相似文献   

6.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

7.
The consequences of habitat alteration on the role of understory insectivorous birds as predators of herbivorous insects in tropical forests are poorly understood. To examine whether fragmentation may affect the top–down controls of herbivory, we compared the number of species, individuals, and the community structure of insectivorous birds between fragments and continuous tropical moist forest in Mexico. We also registered insect herbivore abundances and conducted a larvae predation experiment to evaluate the potential role of insectivorous birds as predators of herbivorous insects. We recorded 63 bird species from 22 families, 43 percent of which were insectivorous birds. Species richness, abundance, and diversity of the avian community were higher in continuous forest compared with forest fragments. For insectivorous birds in particular, there was low similarity in avian insectivore communities between forest types, and forest fragments had more heavily dominated communities of avian insectivores. During the dry season, forest fragments presented significantly higher predation rates on artificial caterpillars, and lower abundance of herbivorous Lepidoptera larvae, compared with continuous forest. Furthermore, there was a significant negative correlation between artificial caterpillar predation rate and larval Lepidoptera abundance, with higher rates of predation in sample sites of low Lepidoptera abundance. Hence, the potentially greater light in the dry season combined with a more dominated avian insectivore community in forest fragments may facilitate increased predation by avian insectivores, resulting in a decline in abundance of larval Lepidoptera, with implications for the process of insect‐driven herbivory in forest fragments.  相似文献   

8.
The effects of forest fragmentation on ecological interactions and particularly on food webs have scarcely been analysed. There is usually less herbivory in forest fragments than in continuous forests. Here we hypothesize that forest fragmentation enhances top‐down control of herbivory through an increase in insectivorous birds and a decrease in herbivorous insects, with a consequent decrease in plant reproductive success in small forest fragments. In the Maulino forest in central Chile, we experimentally excluded birds from Aristotelia chilensis (Elaeocarpaceae) trees in both forest fragments and continuous forest, and analysed herbivore insect abundance, herbivory and plant reproductive success during two consecutive growing seasons. We expected that insect abundance and herbivory would increase, and reproductive success would decrease in A. chilensis from which birds have been excluded, particularly in forest fragments where bird abundance and predation pressure on insects is higher. The abundance of herbivorous insects was lower in the forest fragments than in the continuous forest only in the first season, and herbivory was lower in forest fragments than in the continuous forest throughout the study. Moreover, during the second growing season herbivory was greater in the excluded trees than in the control trees, and as expected, there was a greater difference in the fragments than in the continuous forest, but this was not statistically significant. Exclusion of birds did not affect the reproductive success of A. chilensis. Our results, after 2 years of study, demonstrate that birds affect the levels of herbivory on A. chilensis in the Maulino forest, but do not support our hypothesis of enhanced top‐down control in fragmented forests, as the strength of the effect of excluding birds did not vary with fragmentation.  相似文献   

9.
Population densities of forest defoliating insects may be regulated by small mammal predation on the pupae. When outbreaks do occur, they often coincide with warm, dry weather and at barren forest sites. A proposed reason for this is that weather and habitat affect small mammal population density (numerical response) and hence pupal predation. We propose an alternative explanation: weather and habitat affect small mammal feeding behaviour (functional response) and hence the outbreak risks of forest pest insects. We report results from laboratory and field-enclosure experiments estimating rates of pupal predation by bank voles (Myodes glareolus) on an outbreak insect, the European pine sawfly (Neodiprion sertifer), at different temperatures (15 and 20 °C), in different microhabitats (sheltered and non-sheltered), and with or without access to alternative food (sunflower seeds). We found that the probability of a single pupa being eaten at 20 °C was lower than at 15 °C (0.49 and 0.72, respectively). Pupal predation was higher in the sheltered microhabitat than in the open one, and the behaviour of the voles differed between microhabitats. More pupae were eaten in situ in the sheltered microhabitat whereas in the open area more pupae were removed and eaten elsewhere. Access to alternative food did not affect pupal predation. The results suggest that predation rates on pine sawfly pupae by voles are influenced by temperature- and habitat-induced variation in the physiology and behaviour of the predator, and not necessarily solely through effects on predator densities as previously proposed.  相似文献   

10.
11.
多样化松林中昆虫群落多样性特征   总被引:4,自引:2,他引:2  
刘兴平  刘向辉  王国红  韩瑞东  戈峰 《生态学报》2005,25(11):2976-2982
马尾松和湿地松是我国南方的2种主要松树。通过对6种不同林分结构下的马尾松林和湿地松林内昆虫群落调查与多样性指数分析,表明2种松树内的昆虫种类和数量无显著差异,混交林中的昆虫群落的种类和数量比纯林多,尤其以捕食天敌类群的种类和数量更为明显。整个昆虫群落和植食类群多样性指数以湿地松林内较大,而天敌(捕食类群和寄生类群)多样性指数则以马尾松林较高。从不同林分结构下昆虫多样性的比较来看,混交林内昆虫群落多样性指数波动较小,明显地高于纯林。但不同林分结构下昆虫多样性随水平分布和垂直分层格局而变化,松树北面和东面各样地之间的昆虫群落多样性指数差异显著,而南、西面之间差异较小;树冠层各样地之间的差异达极显著水平,而枯枝落叶层和树干层之间差异不显著。由此,还进一步讨论了混交林中昆虫群落稳定性问题。  相似文献   

12.
13.
1. Generalist enemies can regulate low‐density forest insect populations, and are widely considered to cause greater mortality in more diverse habitats. Forest tent caterpillars (Malacosoma disstria Hübner; FTC) are a major defoliator of aspen (Populus tremuloides Micheaux) in the boreal forest, a region with a mosaic of forest stand types. This heterogeneity may influence FTC outbreaks if generalist predation or parasitism differs among stands of different tree composition. 2. Using exclusion experiments we estimate predation and parasitism of FTC across multiple life‐history stages in low‐density populations occupying both aspen (low diversity) and mixedwood stands (high diversity). 3. Arthropod and avian generalist predators were responsible for most natural enemy‐caused mortality of immature FTC, but their relative impacts varied among FTC life‐history stages. Contrary to expectation, predation on late instar larvae and pupae was higher in the less diverse aspen stands and early instar mortality did not differ. 4. By considering multiple life‐history stages, our results provide a more comprehensive view of natural enemy‐caused morality of immature FTC. Because generalist predation on FTC was higher in aspen than in mixedwood stands, we suggest that FTC populations may be slower to reach outbreak levels in aspen stands.  相似文献   

14.
Soils of pine forests in the Bytnica Forestry District, Poland, are poor in nutrients readily accessible to plants. The excessively acidic reaction of the soils, typical for soils under pine forests, unfavourably affects the growth of microorganisms whose numbers are lower than in soils under deciduous and mixed forests. In the pine forests of the studied forestry there were outbreaks of a defoliating insect - pine beauty moth (Panolis flammea L.), which resulted in over 60% defoliation of the trees. The studies were carried out on the area of tree stands subjected to gradation by leaf-eating insects (sprayed and not sprayed) and healthy stand of the same age class (age 60 to 70 years). The studies revealed increased number of soil microorganisms in samples taken from the area affected by pine beauty moth gradation in the case of both unsprayed areas and those sprayed with the pesticide. The occurrence in these soils of larger numbers of ammonifying and denitrifying bacteria points to the presence of conditions favouring the growth of heterotrophic organisms. Changes in the number of actinomycetes and fungi in soils under tree stands subjected to gradation by insects, compared to healthy stands, can be a consequence of a change of environmental conditions (e.g. % content of organic carbon). Soils under defoliated tree stands show higher biochemical activity related to nitrogen cycling in the pine forest ecosystem. This leads to higher availability of organic nitrogen for conversion to inorganic forms of nitrogen, which are utilised by trees. Further changes occurring in soils under forest stands affected by gradation by leaf-eating insects would allow to gain knowledge on the ecological consequences of the use of insecticides in the protection of pine stands against harmful insects, with particular stress on those situations in which pine stands not threatened by complete defoliation are sprayed.  相似文献   

15.
A minimal model for the interactions of trees, insects, and their enemies suggests a simple formula for splitting all forests where insect outbreaks can occur into two categories: where outbreaks are periodic and endogenously generated and where outbreaks are triggered by exogenous factors and are, in general, recurrent but aperiodic. The formula is in full agreement with all field studies in which various phenomena triggering insect outbreaks have been identified. The observed consequences of introductions and removals of insects are also well predicted by the minimal model. But, even more surprisingly, the model allows a simple and explicit condition for the synchronization of outbreaks in spatially extended forests to be derived analytically. This condition is, in general, satisfied when the insect is a so-called pest, that is, when the outbreaks are extreme. The model also predicts the possibility of traveling waves of insect outbreaks.  相似文献   

16.
17.
Influence of plant quality on pine sawfly population dynamics   总被引:7,自引:0,他引:7  
The contribution of plant quality to the population dynamics of herbivorous insects has been an issue of much controversy. Many studies have documented how variable plant quality differentially influences the survival and fecundity of insect individuals. Whether or not such effects can be translated to the level of insect populations is, however, not clear. In order to test this hypothesis one needs to combine processes at both the level of the individual and the population. This is difficult with an empirical approach, but could be achieved by means of modeling given that appropriate data exist for both levels of organization. In this paper we report on a model developed to analyze whether altered Scots pine (Pinus sylvestris) quality can contribute to the build‐up of populations of the European pine sawfly (Neodiprion sertifer). Experimental data on responses of sawfly larvae to variable plant quality, i.e. needle concentrations of resin acids, were used to parameterize the model. Larval survival and sawfly fecundity are reduced at high resin acid concentrations. However, high resin acid concentrations are, at the same time, beneficial because larval defense against predators is enhanced. In the model, data on individual responses were combined with literature data at the population level; a type III functional response related to cocoon predation was presumed to be the density‐dependent process regulating sawfly populations. The analysis showed that the risk for an outbreak is high when needle resin acid concentration (r) or larval predation pressure (p) is low. When r or p is high there is no risk. By analyzing different scenarios it was found that small changes in r and p can result in the sawfly population moving from low to high outbreak risk. Changes of the same, or larger, magnitude in r have been observed in empirical studies. The role of tritrophic interactions was also considered. This was done by removing the positive effects of resin acids on larval performance in the model. It was found that the anti‐predator defense of N.sertifer makes it prone to outbreak under wider combinations of r and p than an insect without the defense. We conclude that small changes in a density‐independent factor, such as needle chemistry, can have significant effects on herbivore population dynamics because increased fecundity and survival caused by needle quality may allow the population to escape the control of density‐dependent factors, such as cocoon predation.  相似文献   

18.
Primary consumers are under strong selection from resource (‘bottom‐up’) and consumer (‘top‐down’) controls, but the relative importance of these selective forces is unknown. We performed a meta‐analysis to compare the strength of top‐down and bottom‐up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom‐up effects, type of top‐down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top‐down forces were stronger than bottom‐up forces. Notably, chewing, sucking and gall‐making herbivores were more affected by top‐down than bottom‐up forces, top‐down forces were stronger than bottom‐up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top‐down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top‐down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri‐trophic approach when studying insect‐plant interactions.  相似文献   

19.
Numerous studies conducted in agro-ecosystems support the enemies hypothesis, which states that predators and parasites are more efficient in controlling pest densities in polycultures than in monocultures. Few similar studies, however, have been conducted in forest ecosystems, and we do not yet have evidence as to whether the enemies hypothesis holds true in forests. In a 2-year study, we investigated whether the survival of autumnal moth (Epirrita autumnata) larvae and pupae differs between silver birch monocultures and two-species mixtures of birch with black alder, Norway spruce and Scots pine. We placed young larvae on birch saplings and monitored their survival until the end of the larval period, when we checked whether they had been parasitized. After the larvae had pupated, pupal survival was tested in a field trial. In 2002, the larvae disappeared earlier and their overall survival was lower in birch–pine mixtures than in other stand types. In 2003, survival probability was lowest in birch–pine stands only during the first week and there were no differences between stands in overall survival. Larval parasitism was not affected by tree species composition. Pupal weight and pupal survival were likewise not affected by stand type. Among the predators, wood ants were more abundant on birches growing in birch–pine mixtures than in other stand types probably because colonies of myrmecophilic aphids were common on pines. In contrast, spider numbers did not differ between stand types. Ant exclusion by means of a glue ring around the birch trunk increased larval survival, indicating that ants are important predators of the autumnal moth larvae; differences in larval survival between stands are probably due to differential ant predation. Our results provide only partial support for the enemies hypothesis, and suggest that it is both tree species composition and species diversity which affect herbivore survival and predation.  相似文献   

20.
郝树广 《昆虫知识》2007,44(2):158-163
2006年9月,国家重点基础研究发展计划(973)农业领域2006年度项目“重大农业害虫猖獗危害的机制及可持续控制的基础研究”经科技部批准正式立项启动。该项目以全系统管理思想为指导,在基因、个体、种群、生态系统等不同层次,阐明我国重大农业害虫种群分化与暴发的分子基础,解析害虫与寄主作物及天敌间的相互作用机制,建立害虫监测与预警系统,提出重大农业害虫可持续控制的新途径和新方法,为我国农业减灾、经济的可持续发展奠定科学基础。项目的主要研究内容包括:害虫生长发育与生殖调控的分子机制;害虫对环境胁迫的适应机制;杀虫药剂诱导害虫再猖獗的机制;害虫与寄主植物的协同进化;天敌与害虫的互作及控害机制;作物-害虫-天敌食物网关系及其调控机理;重大害虫区域性暴发监测与预警。项目的总体目标为:阐明害虫生长发育、种群分化的分子基础,揭示害虫种群调节的内在机制;解析作物、害虫及天敌间的互作机制,丰富和发展植物-害虫-天敌协同进化理论;阐明主要害虫区域性灾变机理,发展害虫预警新技术;发展与环境相容的、增强自然控害功能的新技术,提出重大农业害虫可持续控制的新途径和新方法;凝炼一支害虫控制基础研究的创新团队,丰富和发展我国害虫管理的科学理论与实践,提升我国有害生物防控的原始创新和集成创新能力,扩大国际影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号