首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of pepsin-solubilized bovine heart-valve collagen.   总被引:2,自引:0,他引:2       下载免费PDF全文
Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues.  相似文献   

2.
R Asokan  G K Reddy  S C Dhar 《Life sciences》1992,51(13):1065-1071
The intracellular degradation of newly synthesized collagen was studied in both normal fibroblast and 3-methylcholanthrene induced fibrosarcoma cells. The degradation of newly synthesized collagen was examined using pulse-chase experiments and radioactive labelling techniques with [3H]-proline. The percentage of intracellular proteolysis of newly synthesized collagen was determined by measuring the formation of [3H]-hydroxyproline containing fragments in alcohol-soluble and insoluble fractions of normal cells and fibrosarcoma cells in the culture. The rate of degradation of newly formed collagen was then followed by estimating the radioactivity of [3H]-hydroxyproline at different intervals, during the chase period. The results clearly demonstrated that the percent of intracellular degradation of newly synthesized collagen was approximately three fold higher in fibrosarcoma cells than in normal fibroblast cells. The increased intracellular degradation of newly formed collagen was followed by an increase in the activity of cathepsin B and L in fibrosarcoma cells. The pulse-chase experiments indicated that the rate of degradation of newly synthesized collagen in fibrosarcoma cells is relatively greater than in normal fibroblast cells. In addition, as the labelling time increased, the formation of [3H]-hydroxyproline containing peptides in the ethanol-soluble fraction were found to be increased in both normal cells and fibrosarcoma cells, but the extent of formation was higher in fibrosarcoma cells compared to normal fibroblast cells. The results of this investigation collectively suggest that the intracellular degradation of newly synthesized collagen is enhanced in fibrosarcoma cells.  相似文献   

3.
Early in primary culture, arterial smooth-muscle cells undergo a transition from a contractile to a synthetic phenotype. This process includes the loss of myofilaments and of contractility. At the same time, an extensive rough endoplasmic reticulum and a large Golgi complex are formed, and active synthesis of DNA, RNA and proteins commences. In the present study, chemical and immunocytochemical methods were used to investigate the production of extracellular-matrix proteins in relation to this change in phenotypic properties. The results showed that the phase of rapid cellular proliferation that follows the structural modulation of smooth-muscle cells is associated with high rates of collagen and elastin synthesis, as measured by the incorporation of 3H-proline into 3H-hydroxyproline and 3H-valylproline, respectively. SDS-polyacrylamide gel electrophoresis and fluorography indicated that type-I collagen is the main collagen species synthesized by these cells. Smaller amounts of type-V collagen and (although not definitively identified) type-III collagen were also detected. Indirect immunofluorescence and immunoelectron microscopy demonstrated that smooth-muscle cells surround themselves with an incomplete basement membrane, containing laminin and type-IV collagen, and thin fibrils of type-I collagen. Adjacent to these fibrils, aggregates of amorphous, elastin-like material were also found. Our observations confirm and extend earlier notions of a close similarity between the behaviour of arterial smooth-muscle cells during in vitro cultivation and during the early stages of the formation of atherosclerotic lesions.  相似文献   

4.
Aggregation of platelets by fibrils formed from collagens type I, II and III could be inhibited by coating the fibrils with anti-collagen antibodies or Fab fragments. Similar results were obtained in a clot-retraction assay. Inhibition was achieved with stoichiometric amounts of antibodies and was specific for each type of collagen. Aggregation caused by a mixture of type-I and -III collagens could only be inhibited by a mixture of antibodies against both collagens. The data show that each interstitial collagen is capable of interacting with platelets and do not support the concept of an outstanding activity of type-III collagen.  相似文献   

5.
Type I collagen is the major bone protein. Little is known quantitatively about human bone collagen synthesis in vivo, despite its importance for the understanding of bone formation and turnover. Our aim was to develop a method that could be used for the physiological and pathophysiological investigation of human bone collagen synthesis. We have carried out preliminary studies in patients undergoing hip replacement and in pigs to validate the use of the flooding dose method using (13)C- or (15)N-labelled proline and we have now refined our techniques to allow them to be used in a normal clinical or physiological setting. The results show that the application of a flooding dose causes bone free-proline labelling to equilibrate with that of blood in pigs and human beings, so that only 150 mg of bone will provide enough sample to prepare and measure the labelling of three fractions of bone collagen (dissolved in NaCl, acetic acid and pepsin/acetic acid) which have the same relative labelling (1.0:0.43:0.1) as measured by GC-combustion-isotope ratio MS. The rates of incorporation were substantially faster than in skeletal muscle samples taken at the same time. The results suggest that different fractions of human bone collagen turnover at markedly higher rates than had been previously considered. This approach should allow us to discover how growth and development, food, activity and drugs affect bone collagen turnover and to measure the effects on it of ageing and bone disease.  相似文献   

6.
Gallium nitrate (GN) is an inhibitor of bone resorption and thereby may result in a change in coupled bone formation. In the present investigation the effects of GN on bone formation were studied in the rat osteosarcoma (ROS) 17/2.8 cell line and normal diploid rat osteoblasts (ROB) in vitro and the femur of rats treated in vivo, measuring mRNA levels for two osteoblast parameters, type I collagen, a marker of matrix formation, and osteocalcin, a bone specific protein and also histone H4, a marker of cell proliferation. GN, at 50 μM for 3 h, increased type I collagen mRNA levels by 132% in ROS 17/2.8 cells and by 122% in proliferating ROB cells. Osteocalcin (OC) mRNA levels were decreased by 61% in ROS 17/2.8 cells and by 97% in differentiated ROB cells. These changes occurred in the absence of any effects on cell proliferation. Seventy-day-old female rats were then treated with GN, 0.5 mg/kg/day, for 3 weeks. As previously reported, GN decreased serum calcium levels, but had no effect on lumbar or femoral bone density. In contrast to the in vitro effects, GN had no effect on type I collagen steady-state mRNA levels in the femur; however, it decreased OC steady-state mRNA levels in the femur by 58%. These results suggest that GN has similar in vitro effects in transformed and normal osteoblasts, while the collagen-stimulatory effects observed in vitro cannot be extrapolated to in vivo models. The consistent inhibition of osteocalcin in vitro and in vivo suggests a more specific target for GN that may relate to its effects in inhibiting bone resorption in normal rats.  相似文献   

7.
We have determined the age-related changes in the growth characteristics and expression of the osteoblast phenotype in human calvaria osteoblastic cells in relation with histologic indices of bone formation during postnatal calvaria osteogenesis. Histomorphometric analysis of normal calvaria samples obtained from 36 children, aged 3 to 18 months, showed an age-related decrease in the extent of bone surface covered with osteoblasts and newly synthesized collagen, demonstrating a progressive decline in bone formation during postnatal calvaria osteogenesis. Immunohistochemical analysis showed expression of type I collagen, bone sialoprotein, and osteonectin in the matrix and osteoblasts, with no apparent age-related change during postnatal calvaria osteogenesis. Cells isolated from human calvaria displayed characteristics of the osteoblast phenotype including alkaline phosphatase (ALP) activity, osteocalcin (OC) production, expression of bone matrix proteins, and responsiveness to calciotropic hormones. The growth of human calvaria osteoblastic cells was high at 3 months of age and decreased with age, as assessed by (3H)-thymidine incorporation into DNA. Thus, the age-related decrease in bone formation is associated with a decline in osteoblastic cell proliferation during human calvaria osteogenesis. In contrast, ALP activity and OC production increased with age in basal conditions and in response to 1,25(OH)2, vitamin D3, suggesting a reciprocal relationship between cell growth and expression of phenotypic markers during human postnatal osteogenesis. Finally, we found that human calvaria osteoblastic cells isolated from young individuals with high bone formation activity in vivo and high growth potential in vitro had the ability to form calcified nodular bone-like structures in vitro in the presence of ascorbic acid and β-glycerophosphate, providing a new model to study human osteogenesis in vitro. J. Cell. Biochem. 64:128–139. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The circadian patterns of bone collagen formation were studied in vitro to ascertain whether the biorhythmic profiles previously measured in vivo reflect true differences in collagen synthesis. Alteration of amino acid pool sizes did not negate the circadian-stage differences in bone collagen production. Evaluations of proline uptake and transport, as well as collagenous protein turnover, demonstrated that the intracellular assembly and secretion of bone collagenous protein during the dark span is truly decreased relative to that during the light period. It was further affirmed that PTH is essential for maintenance of the normal circadian collagen synthesis rhythms.  相似文献   

9.
Bones from young rats were incubated with radioactive glucosamine and proline. The concentrations and specific activities of matrix glycosaminoglycan fractions, prepared by a cetylpyridinium chloride method, and the specific activity of insoluble collagen hydroxyproline were determined. Acute parathyroid extract treatment increased labelling of hyaluronic acid and a glycopeptide fraction. These effects were partially blocked by calcitonin treatment which had no effect by itself. Parathyroid extract inhibited collagen synthesis and this effect was not blocked by calcitonin. Effects of these two hormones on labelling of chondroitin sulfate fractions were more variable. Vitamin D-3 caused an increase in labelling of all matrix fractions measured in bone from thyroparathyroidectomized rats, but its stimulating effect upon collagen synthesis was blocked by parathyroid extract. Bones from rats made rachitic on a phosphorus and vitamin D-deficient diet were incubated in vitro with radioactive glucosamine and proline. Over a three-week period rachitic bone exhibited a progressive fall in concentration and labelling of a glycopeptide-hyaluronic acid fraction, while pair-fed animals supplemented either with phosphorus alone or with phosphorus and vitamin D-3 not only remineralized their bones, but the bones showed a pronounced increment in concentration and labelling of this fraction. Both treatment regimens also enhanced chondroitin sulfate and collagen labelling.  相似文献   

10.
Bones from young rats were incubated with radioactive glucosamine and proline. The concentrations and specific activities of matrix glycosaminoglycan fractions, prepared by a cetylpyridinium chloride method, and the specific activity of insoluble collagen hydroxyproline were determined. Acute parathyroid extract treatment increased labelling of hyaluronic acid and a glycopeptide fraction. These effects were partially blocked by calcitonin treatment which had no effect by itself. Parathyroid extract inhibited collagen synthesis and this effect was not blocked by calcitonin. Effects of these two hormones on labelling of chondroitin sulfate fractions were more variable. Vitamin D-3 caused an increase in labelling of all matrix fractions measured in bone from thyroparathyroidectomized rats, but its stimulating effect upon collagen synthesis was blocked by paratyroid extract.Bones from rats made rachitic on a phosphorus and vitamin D-deficient diet were incubated in vitro with radioactive glucosamine and proline. Over a three-week period rachitic bone exhibited a progressive fall in concentration and labelling of a glycopeptide-hyaluronic acid fraction, while pair-fed animals supplemented either with phosphorus alone or with phosphorus and vitamine D-3 not only remineralized their bones, but the bones showed a pronounced increment in concentration and labelling of this fraction. Both treatment regimens also enhanced chondroitin sulfate and collagen labelling.  相似文献   

11.
12.
Various extracellular-matrix proteins were detected by indirect immunofluorescence in rat intestine at various stages of development ranging from 14 days of gestation to the adult stage. At the earliest stage studied, laminin, nidogen and type-IV collagen were present at the epithelial/mesenchymal interface, whereas fibronectin and type-III procollagen were found throughout the whole mesenchyme. We were able to relate some changes in the staining patterns of extracellular-matrix proteins to morphogenetic processes. As early as 15 days of gestation, i.e. before villus formation, modifications in the distribution or in the staining intensity of all of the antigens within the mesenchyme paralleled the orientation and segregation of mesenchymal cells in the region surrounding the basal membrane and in the presumptive peripheral muscular layers. During villus outgrowth, the transient disappearance of fibronectin and particularly type-III procollagen from the top of the protruding villus core was evident. During the perinatal period, i.e. when crypts develop, the linear staining for the basal-membrane proteins became restricted to the base of the villi, their labelling along the remaining portion of the villi being more irregular. In mature rat intestine, no major modifications in matrix proteins along the crypt-villus axis in relation to epithelial differentiation were found, except that the labelling for fibronectin and type-III procollagen, which are at this stage more closely related to the basement membrane, was less pronounced in the upper part of villi.  相似文献   

13.
The aim of this study was to investigate capability of cell attachment and ectopic bone formation in pigs after either ex vivo transplantation and expansion of bone marrow stem cells (BMSc) into three-dimensional porous tantalum, or porous tantalum supplemented with BMSc. After 24 hours incubation, cells adhering to the porous tantalum discs were quantified by means of scintillation counting of 3H-thymidine-labeled cells. After 7 days of incubation, the cell-loaded porous tantalum discs were harvested for histological analysis or implanted in the infrasternal muscle; an empty disc and disc implanted immediately after cell loading served as controls. All implants were taken out after 8 weeks of implantation and histological examination was performed. The results of in vitro cell attachment to the porous tantalum discs were not improved significantly with gelatin, collagen or fibronectin coatings. Histological analysis of cell loaded discs in vitro demonstrated viable BMSc within the 3-D tantalum structure. In vivo bone induction was demonstrated when the porous tantalum discs were cultured with BMSc. Our findings indicated that porous tantalum was suitable for cell attachment, and ectopic bone formation in pigs was achieved by means of BMSc cultured with porous tantalum. The present study suggests that cell-mediated hard bone tissue repair technology makes it possible to prefabricate autologous BMSc into three-dimensional trabecular metal in order to engineer bone tissue.  相似文献   

14.
Tissue engineering of human bone is a complex process, as the functional development of bone cells requires that regulatory signals be temporally and spatially ordered. The role of three-dimensional cellular interactions is well understood in embryonic osteogenesis, but in vitro correlates are lacking. Here we report that in vitro serum-free transforming growth factor (TGF)-beta1 stimulation of osteogenic cells immediately after passage results in the formation of three-dimensional cellular condensations (bone cell spheroids) within 24 to 48 hours. In turn, bone cell spheroid formation results in the up-regulation of several bone-related proteins (e.g., alkaline phosphatase, type I collagen, osteonectin) during days 3-7, and the concomitant formation of micro-crystalline bone. This system of ex vivo bone formation should provide important information on the physiological, biological and molecular basis of osteogenesis.  相似文献   

15.
Mature periodontal tissues from adult-mouse first mandibular molars were cultured in a continuous-flow organ-culture system which allowed the regulation of both ascorbic acid concentration and pO(2) (oxygen partial pressure). Protein synthesis was measured by analysing the incorporation of [(3)H]proline into collagenous and non-collagenous proteins during the last 24h of a 2-day culture. At low pO(2) [16.0kPa (approx. 120mmHg)] approx. 60% of protein-incorporated [(3)H]proline was found in collagenous proteins. However, it was evident that this collagen was considerably underhydroxylated. At high pO(2) [56.0kPa (approx. 420mmHg)], both the amount of collagen deposited in the tissues and the degree of hydroxylation were increased considerably. In contrast, no significant effect on non-collagenous protein was observed. Tissues cultured at low pO(2) for the first 48h were unable to respond to a subsequent increase in pO(2) during the last 24h. Analysis of pepsin-solubilized collagen alpha-chains labelled with [(14)C]glycine demonstrated the synthesis of both type-I and type-III collagens by explants cultured for 48h at high pO(2). Type-III collagen comprised 20-30% of the radioactivity in alpha-chains in both the periodontal ligament and the tissues of the alveolar process. The pattern of protein synthesis in the alveolar tissues at high pO(2) was similar to that observed in these tissues in vivo. However, in the cultured periodontal ligament the proportions of non-collagenous proteins and type-III collagens were increased in comparison with the tissue in vivo.  相似文献   

16.
Subcutaneous implantation of demineralized bone matrix in rat results in the local cartilage and bone development. This in vivo model of bone formation was used to examine the expression patterns of cartilage and bone specific extracellular matrix genes. The steady state levels of mRNA in implants for cartilage specific type II collagen, type IX collagen, proteoglycan link protein and cartilage proteoglycan core protein (aggrecan) were increased during chondrogenesis and cartilage hypertrophy. Fibronectin mRNA levels were high during mesenchymal cell migration, attachment and chondrogenesis. Integrin (beta 1 chain) mRNA was expressed throughout the endochondral bone development. Type I collagen mRNA levels in implants increased as early as day 3, reached its peak during osteogenesis. These gene markers will be useful in the study of the mechanism of action of bone morphogenetic proteins present in the demineralized bone matrix.  相似文献   

17.
Osteoarthrosis was induced in one knee joint of dogs by an established surgical procedure. Changes in the articular cartilage in the biosynthesis of collagen and other proteins were sought by radiochemical labelling in vivo, with the following findings. (1) Collagen synthesis was stimulated in all cartilage surfaces of the experimental joints at 2, 8 and 24 weeks after surgery. Systemic labelling with [3H]proline showed that over 10 times more collagen was being deposited per dry weight of experimental cartilage compared with control cartilage in the unoperated knee. (2) Type-II collagen was the radiolabelled product in all samples of experimental cartilage ranging in quality from undamaged to overtly fibrillated, and was the only collagen detected chemically in the matrix of osteoarthrotic cartilage from either dog or human joints. (3) Hydroxylysine glycosylation was examined in the newly synthesized cartilage collagen by labelling dog joints in vivo with [3H]lysine. In experimental knees the new collagen was less glycosylated than in controls. However, no difference in glycosylation of the total collagen in the tissues was observed by chemical analysis. (4) Over half the protein-bound tritium was extracted by 4 M-guanidinium chloride from control cartilage labelled with [3H]proline, compared with one-quarter or less from experimental cartilage. Two-thirds of the extracted tritium separated in the upper fraction on density-gradient centrifugation in CsCl under associative conditions. Much of this ran with a single protein band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under reducing conditions. The identity of this protein was unknown, although it resembled serum albumin in mobility afte disulphide-bond cleavage.  相似文献   

18.
花背蟾蜍角膜早期形态发生中胶原合成的放射自显影研究   总被引:2,自引:1,他引:2  
冯伯森  孙颖 《动物学报》1990,36(1):52-57
本实验以~3H-脯氨酸为标记物,用放射自显影方法研究了花背蟾蜍眼的早期发育中胶原的合成、分布以及对角膜早期形态发生的作用。结果表明,角膜上皮从开始形成即合成胶原,并在角膜上皮基底面聚积。在角膜开始透明时,角膜上皮、内角膜和晶状体的胶原合成速率都明显增加,提示与角膜分化密切相关。  相似文献   

19.
Pleiotrophin (PTN) is an extracellular matrix-associated growth/differentiation factor that, in post-natal life, is found mainly in bone and brain. Bone development was investigated in ptn-overexpressing mice between 1 and 30 weeks. In transgenics and controls, PTN (and its receptor syndecan-3) was synthesized by osteoblasts and was present in striated muscle. ptn over-expression enhanced intramembranous bone formation and had multiple effects on long-term bone growth. The pubertal growth spurt did not take place in transgenic mice, in which the growth trajectory was steady and continuous until 25 weeks. By 30 weeks, transgenic and control mice were of the same size, but the calcium content/mg bone was approximately 10% higher in the transgenics. PTN was also localized in growth plate and articular chondrocytes, but only in transgenic mice. In these, synthesis of type I collagen by articular chondrocytes was observed, as well as an encroachment of subchondral bone into the articular cartilage. The results suggest that PTN has multiple roles during in vivo bone formation and remodeling, probably acting as a co-factor or accessory protein that modulates the effects of primary signaling molecules.  相似文献   

20.
Soluble and microsomal proteins synthesized at various stages of oogenesis in Xenopus laevis were compared by 3H and 14C dual-isotope labelling with subsequent mixing and analysis on sodium dodecyl sulfate (SDS)-polyacrylamide gels. The results indicated that the proteins labelled in all the stages of oogenesis studied are remarkably similar. However, the patterns in the small and medium-sized oocytes are more similar to one another than to the patterns characteristic of large oocytes. The greatest differences were found when comparing the microsomal proteins.
The labelling patterns of oocyte proteins in vitro were not significantly different from the in vivo patterns for the stages of oogenesis studied. These results indicate that (1) there is little quantitative contribution of proteins to either the soluble or microsomal fractions from extra-oocytic sources in vivo and (2) the in vitro system itself has little effect on the labelling patterns over the incubation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号