首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) was found to stimulate phospholipase D activity in cultured primary astrocytes. Both the hydrolysis and the transphosphatidylation reaction catalyzed by phospholipase D were studied in cells labeled with [3H]glycerol. Phosphatidic acid (PA) synthesis was increased after addition of 100 nM TPA. When ethanol was present in the cell culture medium, phosphatidylethanol (Peth), a product of phospholipase D-catalyzed transphosphatidylation, was formed. The half-maximum effective concentrations (EC50) of TPA were 25 nM for PA increase as well as for Peth formation. The formation of Peth in ethanol-treated cells was accompanied by an inhibition of the TPA-induced increase in labeled PA. Increasing ethanol concentrations led to an increase in [3H]Peth and a decrease in [3H]PA. A protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), inhibited both the synthesis of PA and the formation of Peth observed after TPA addition to the astrocytes. Dioctanoyl-glycerol (100 microM) stimulated the formation of Peth in the presence of ethanol. In addition to the induction of Peth formation in astrocytes, TPA induced Peth formation in ethanol-treated neurons. The present results indicate that phospholipase D activity is stimulated by TPA in cultured primary brain cells. Modulation of phospholipase D activity by protein kinase C is a mechanism that may be important in signal transduction cascades.  相似文献   

2.
Since the original discovery and structural elucidation of the mammalian phospholipase D (PLD), its potential to play a role in the lipid signalling pathway has attracted considerable interest. Now, it is generally accepted that different PLD isozymes are likely to serve diverse functions in membrane trafficking, endocytosis, exocytosis, cell growth, differentiation and actin cytoskeletal organization. In addition, PLDs are known to play a key role in neurite outgrowth, especially axon outgrowth, in neuronal cells.  相似文献   

3.
Phospholipase D has long been implicated in vesicle formation and vesicular transport through the secretory pathway. The Golgi apparatus has been shown to exhibit a plethora of mechanisms of vesicle formation at different stages to accommodate a wide variety of cargo. Phospholipase D has been found on the Golgi apparatus and is regulated by ADP-ribosylation factors which are themselves regulators of vesicle trafficking. Moreover, the product of phospholipase D activity, phosphatidic acid, as well as its degradation product diacylglycerol, have been implicated in vesicle fission and fusion events. Here we summarize recent advances in the understanding of the role of phospholipase D at the Golgi apparatus.  相似文献   

4.
Cellular senescence appears to be an important part of organismal aging. Cellular senescence is characterized by flattened enlarged morphology, inhibition of DNA replication in response to growth factors, inability to phosphorylate the pRb tumor suppressor protein, inability to produce c-fos or AP-1 and overexpression of a variety of genes, notably p21 (CIP-1/WAF-1) and p16INK. It is now clear that certain early mitotic signals become defective with the onset of senescence. Among these is the PLD/PKC pathway. Evidence suggests that activation of PLD and PKC is critical for mitogenesis. Recent data suggest that the defect in PLD/PKC in cellular senescence is a result of elevated cellular ceramide levels which inhibit PLD activation. It appears that the elevated ceramide is a result of neutral sphingomyelinase activation. Ceramide acts to inhibit the activation of PLD by possibly three mechanisms, inhibiting activation by Rho, translocation to the membrane and gene expression. Addition of ceramide to young cells not only inhibits PLD but also recapitulates all the standard measures of cellular senescence as described above.  相似文献   

5.
The role of lipid-bound second messengers in the regulation of neurotransmitter secretion is an important but poorly understood subject. Both bovine adrenal chromaffin cells and rat phoeochromocytoma (PC12) cells, two widely studied models of neuronal function, respond to bradykinin by generating phosphatidic acid (PA). This putative second messenger may be produced by two receptor-linked pathways: sequential action of phospholipase C (PLC) and diacylglycerol kinase (DAG kinase), or directly by phospholipase D (PLD). Here we show that bradykinin stimulation of chromaffin cells prelabelled (24 h) with 32Pi leads to production of [32P]PA which is not affected by 50 mM butanol. However, bradykinin stimulation of PC12 cells leads to [32P]PA formation, all of which is converted to phosphatidylbutanol in the presence of butanol. When chromaffin cells prelabelled with [3H]choline were stimulated with bradykinin there was no enhancement of formation of water soluble products of phosphatidylcholine hydrolysis. When chromaffin cells were permeabilised with pneumolysin and incubated in the presence of [gamma-32P]ATP, the formation of [32P]PA was still stimulated by bradykinin. These results show that, although both neuronal models synthesize PA in response to bradykinin, they do so by quite different routes: PLC/DAG kinase for chromaffin cells and PLD for PC12 cells. The observation that neither bradykinin nor tetradecanoyl phorbol acetate stimulate PLD in chromaffin cells suggests that these cells lack PLD activity. The conservation of PA formation, albeit by different routes, may indicate an essential role of PA in the regulation of cellular events by bradykinin.  相似文献   

6.
转移磷脂酰反应是在磷脂酶D的催化作用下,甘油磷脂和含羟基化合物发生碱基交换生成新的磷脂的反应。该反应为磷脂酶D所特有,被广泛的应用于动物、植物和微生物的脂类代谢、脂类信号研究以及重要生化制剂磷脂的合成工艺中。本文综述了转移磷脂酰反应的反应机制、影响因素、生物学作用及应用现状,讨论了深入研究这一反应所有待揭示的问题,并展望了今后的发展方向。  相似文献   

7.
Membrane fusion remains one of the less well-understood processes in cell biology. A variety of mechanisms have been proposed to explain how the generation of fusogenic lipids at sites of exocytosis facilitates secretion in mammalian cells. Over the last decade, chromaffin cells have served as an important cellular model to demonstrate a key role for phospholipase D1 (PLD1) generated phosphatidic acid in regulated exocytosis. The current model proposes that phosphatidic acid plays a biophysical role, generating a negative curvature and thus promoting fusion of secretory vesicles with the plasma membrane. Moreover, multiple signaling pathways converging on PLD1 regulation have been unraveled in chromaffin cells, suggesting a complex level of regulation dependant on the physiological context.  相似文献   

8.
Abstract: Activation of phospholipase D (PLD) is involved in receptor-mediated signal transduction responses. Signaling from PLD to a downstream molecule(s) appears to be mediated by the PLD product phosphatidic acid (PA). A target molecule(s) of PA, however, has not yet been identified. The present study sought to define such a target molecule(s) of PA. In bovine brain cytosol, proteins with apparent molecular weights of 29,000 (p29) and 32,000 (p32) were prominently phosphorylated in the presence of PA, but not in its absence, indicating that there is a PA-regulated protein kinase (PARK) in bovine brain that phosphorylates p29 and p32. One of these substrates, p29, was purified to near homogeneity. Its partial amino acid sequence was determined and found to be identical to that of a known brain-specific 25-kDa protein (p25). The purified p29 was also readily recognized by and immunoprecipitated with an anti-p25 antibody. These results suggest that p29 is very similar to or identical with p25. Using the purified p29 as a substrate, PARK was purified to near homogeneity. The purified PARK had an apparent molecular weight of 80,000, was strongly recognized by an anti-protein kinase C (PKC)α antibody, and was activated by phosphatidylserine (PS) as well as PA. The PA- and PS-stimulated PARK activity was extremely augmented by the presence of 1 µM free Ca2+. In the presence of 1 mM EGTA, phorbol 12-myristate 13-acetate activated PARK synergistically with PA or PS. Similar results were obtained with the purified recombinant PKCα. From these results, it is suggested that the PARK activity purified might be attributed to PKCα. In p25-depleted bovine brain cytosol, which was prepared by treatment of bovine brain cytosol with the anti-p25 antibody, PA-dependent phosphorylation of p29, but not p32, was almost completely eliminated. When PKCα in bovine brain cytosol was depleted by its precipitation with the anti-PKCα antibody, neither p29 nor p32 in this PKCα-depleted cytosol was phosphorylated in the presence of PA. These results indicate that in bovine brain cytosol PA activates PKCα, which, in turn, phosphorylates p29, which may be identical with p25.  相似文献   

9.
Bradykinin is known to activate phospholipase D in PC12 cells. Because bradykinin may also activate protein kinase C in these cells, the possible role of this kinase in mediating the action of bradykinin was investigated. Phospholipase D activity in PC12 cells was assayed by measuring the formation of [3H]phosphatidylethanol in cells prelabeled with [3H]palmitic acid and incubated in the presence of ethanol. The phorbol ester phorbol dibutyrate mimicked the effect of bradykinin on [3H]phosphatidylethanol formation. The protein kinase C inhibitor staurosporine (1 microM) significantly attenuated the effect of phorbol dibutyrate (35-70%) but did not block bradykinin-stimulated [3H]phosphatidylethanol formation. In addition, the effect of phorbol dibutyrate was additive with that of bradykinin. Prolonged treatment of PC12 cells with phorbol dibutyrate (24 h), which depletes cells of protein kinase C, greatly attenuated bradykinin-stimulated [3H]phosphatidylethanol accumulation in intact cells. This treatment caused a 55% decrease in both fluoride-stimulated [3H]phosphatidylethanol production in the intact cell and phospholipase D activity as assessed by an in vitro assay using an exogenous substrate. Therefore, the effect of prolonged phorbol dibutyrate pretreatment on bradykinin-stimulated [3H]phosphatidylethanol production could not be attributed exclusively to the depletion of protein kinase C. Thus, although the data with phorbol ester suggest that activation of protein kinase C leads to an increase in phospholipase D activity, this kinase probably does not play a role in mediating the effect of bradykinin. Finally, although pretreatment with phorbol dibutyrate completely blocked bradykinin-stimulated [3H]phosphatidylethanol production in the intact cell, it only partially (approximately 50%) inhibited bradykinin-stimulated [3H]diacylglycerol formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Phosphatidylinositol 4,5-bisphosphate-regulated phosphatidylcholine-specific phospholipase D is conserved from yeast to man. The essential role of this enzyme in yeast is to mediate the fusion of Golgi and endosome-derived vesicles to generate the prospore membrane during the developmental program of sporulation, through the production of the fusogenic lipid phosphatidic acid. In addition to recruiting proteins required for fusion, phosphatidic acid is believed to lower the energy barrier to stimulate membrane curvature. During mitotic growth, phospholipase D activity is dispensable unless the major phosphatidylinositol/phosphatidylcholine transfer protein is absent; it also appears to play a nonessential role in the mating signal transduction pathway. The regulation of phospholipase D activity during both sporulation and mitotic growth is still not fully understood and awaits further characterization.  相似文献   

11.
In PC12 pheochromocytoma cells whose phospholipids had been prelabelled with [3H]palmitic acid, bradykinin increased the production of [3H]phosphatidic acid. The increase in [3H]phosphatidic acid occurred within 1-2 min. before the majority of the increase in [3H]diacylglycerol. When the phospholipids were prelabeled with [3H]choline, bradykinin increased the intracellular release of [3H]choline. The production of phosphatidic acid and choline suggests that bradykinin was increasing the activity of phospholipase D. Transphosphatidylation is a unique property of phospholipase D. In cells labeled with [3H]palmitic acid, bradykinin stimulated the transfer of phosphatidyl groups to both ethanol and propanol to form [3H]phosphatidylethanol and [3H]phosphatidylpropanol, respectively. The effect of bradykinin on [3H]phosphatidic acid and [3H]phosphatidylethanol formation was partially dependent on extracellular Ca2+. In cells treated with nerve growth factor, carbachol also increased [3H]phosphatidylethanol formation. To investigate the substrate specificity of phospholipase D, cells were labeled with [14C]stearic acid and [3H]palmitic acid, and then incubated with ethanol in the absence or presence of bradykinin. The 14C/3H ratio of the phosphatidylethanol that accumulated in response to bradykinin was almost identical to the 14C/3H ratio of phosphatidylcholine. The 14C/3H ratio in phosphatidic acid and diacylglycerol was higher than the ratio in phosphatidylcholine. These data provide additional support for the idea that bradykinin activates a phospholipase D that is active against phosphatidylcholine. The hydrolysis of phosphatidylcholine by phospholipase D accounts for only a portion of the phosphatidic acid and diacylglycerol that accumulates in bradykinin-stimulated cells: bradykinin evidently stimulates several pathways of phospholipid metabolism in PC12 cells.  相似文献   

12.
Metabotropic excitatory amino acid (EAA) receptors are coupled to effector systems through G proteins. Because various G protein-coupled receptors stimulate the hydrolysis of phosphatidylcholine by phospholipase D (PLD), we examined the possibility that metabotropic EAA receptors exist that are coupled to the activation of PLD. We found that the selective metabotropic glutamate receptor (mGluR) agonists 1S,3R-amino-1,3-cyclopentanedicarboxylic acid (ACPD) and 1S,3S-ACPD, but not the inactive isomer, 1R,3S-ACPD, induce a concentration-dependent increase in PLD activity in hippocampal slices. Selective ionotropic glutamate receptor (iGluR) antagonists did not block 1S,3R-ACPD-induced PLD stimulation. Furthermore, although selective iGluR agonists did not activate this response, the nonselective mGluR-iGluR agonists, ibotenate and quisqualate, caused significant increases in PLD activity (all in the presence of iGluR antagonists). L-2-Amino-3-phosphonopropionic acid, which blocks the mGluR that is coupled to phosphoinositide hydrolysis in various brain regions, activates PLD to the same extent as the active isomers of ACPD. These data suggest that metabotropic EAA receptors exist in hippocampus that are coupled to PLD activation and are pharmacologically distinct from phosphoinositide hydrolysis-coupled mGluRs.  相似文献   

13.
Activation of phospholipase D occurs in response to a wide variety of hormones, growth factors, and other extracellular signals. The initial product of phospholipase D, phosphatidic acid (PA), is thought to serve a signaling function, but the intracellular targets for this lipid second messenger are not clearly identified. The production of PA in human neutrophils is closely correlated with the activation of NADPH oxidase, the enzyme responsible for the respiratory burst. We have developed a cell-free system, in which the activation of NADPH oxidase is induced by the addition of PA. Characterization of this system revealed that a multi-functional cytosolic protein kinase was a target for PA, and that two NADPH oxidase components were substrates for the enzyme. Partial purification of the PA-activated protein kinase separated the enzyme from known protein kinase targets of PA. The partially purified enzyme was selectively activated by PA, compared to other phospholipids, and phosphorylated the oxidase component p47-phox on both serine and tyrosine residues. PA-activated protein kinase activity was present in a variety of hematopoietic cells and cell lines and in rat brain, suggesting it has widespread distribution. We conclude that this protein kinase may be a novel target for the second messenger function of PA.  相似文献   

14.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

15.
转移磷脂酰反应是在磷脂酶D的催化作用下,甘油磷脂和含羟基化合物发生碱基交换生成新的磷脂的反应。该反应为磷脂酶D所特有,被广泛的应用于动物、植物和微生物的脂类代谢、脂类信号研究以及重要生化制剂磷脂的合成工艺中。本文综述了转移磷脂酰反应的反应机制、影响因素、生物学作用及应用现状,讨论了深入研究这一反应所有待揭示的问题,并展望了今后的发展方向。  相似文献   

16.
Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.  相似文献   

17.
Abstract: Different neurotransmitter receptor agonists [carbachol, serotonin, noradrenaline, histamine, endothelin-1, and trans -(1 S ,3 R )-aminocyclopentyl-1,3-dicarboxylic acid ( trans -ACPD)], known as stimuli of phospholipase C in brain tissue, were tested for phospholipase D stimulation in [32P]Pi-prelabeled rat brain cortical and hippocampal slices. The accumulation of [32P]phosphatidylethanol was measured as an index of phospholipase D-catalyzed transphosphatidylation in the presence of ethanol. Among the six neurotransmitter receptor agonists tested, only noradrenaline, histamine, endothelin-1, and trans -ACPD stimulated phospholipase D in hippocampus and cortex, an effect that was strictly dependent of the presence of millimolar extracellular calcium concentrations. The effect of histamine (EC50 18 µ M ) was inhibited by the H1 receptor antagonist mepyramine with a K i constant of 0.7 n M and was resistant to H2 and H3 receptor antagonists (ranitidine and tioperamide, respectively). Endothelin-1-stimulated phospholipase D (EC50 44 n M ) was not blocked by BQ-123, a specific antagonist of the ETA receptor. Endothelin-3 and the specific ETB receptor agonist safarotoxin 6c were also able to stimulate phospholipase D with efficacies similar to that of endothelin-1, and EC50 values of 16 and 3 n M , respectively. These results show that histamine and endothelin-1 stimulate phospholipase D in rat brain through H1 and ETB receptors, respectively.  相似文献   

18.
将磷脂酰胆碱专一性磷脂酶D2基因及其功能缺陷点突变基因 (K75 8R)从真核表达载体pCGN中克隆至带有绿色荧光标记蛋白的穿梭质粒pAdTrack CMV中 ;再与腺病毒骨架载体一起在大肠杆菌BJ5183中进行同源重组 ,成功构建磷脂酶D2重组腺病毒。该病毒颗粒感染人胚肾 2 93细胞 ,高效表达磷脂酶D2及其功能缺陷蛋白。这种表达对M3乙酰胆碱受体介导的细胞内磷脂酶D激活无影响。但磷脂酶D2功能缺陷蛋白对蛋白激酶C介导的胞内磷脂酶D激活有显著抑制作用 ;相反 ,磷脂酶D2蛋白有显著增强作用。结果表明  相似文献   

19.
In the present study, an activation mechanism for phospholipase D (PLD) in [3H]palmitic acid-labeled pheochromocytoma PC12 cells in response to carbachol (CCh) was investigated. PLD activity was assessed by measuring the formation of [3H]phosphatidylethanol ([3H]PEt), the specific marker of PLD activity, in the presence of 0.5% (vol/vol) ethanol. CCh caused a rapid accumulation of [3H]-PEt, which reached a plateau within 1 min, in a concentration-dependent manner. The [3H]PEt formation by CCh was completely antagonized by atropine, demonstrating that the CCh effect was mediated by the muscarinic acetylcholine receptor (mAChR). A tumor promoter, phorbol 12-myristate 13-acetate (PMA), also caused an increase in [3H]-PEt content, which reached a plateau at 30-60 min after exposure, but an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate, did not. Although a protein kinase C (PKC) inhibitor, staurosporine (5 microM), blocked PMA-induced [3H]PEt formation by 77%, it had no effect on the CCh-induced formation. These results suggest that mAChR-induced PLD activation is independent of PKC, whereas PLD activation by PMA is mediated by PKC. NaF, a common GTP-binding protein (G protein) activator, and a stable analogue of GTP, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), also stimulated [3H]PEt formation in intact and digitonin-permeabilized cells, respectively. GTP, UTP, and CTP were without effect. Furthermore, guanosine 5'-O-(2-thiodiphosphate) significantly inhibited CCh- and GTP gamma S-induced [3H]PEt formation in permeabilized cells but did not inhibit the formation by PMA, and staurosporine (5 microM) had no effect on [3H]PEt formation by GTP gamma S.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Phospholipase D activity is stimulated rapidly upon occupation of cell-surface receptors. One of the intracellular regulators of phospholipase D activity has been identified as ADP ribosylation factor (ARF). ARF is a small GTP binding protein whose function has been elucidated in vesicular traffic. This review puts into context the connection between the two fields of signal transduction and vesicular transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号