首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the regulation mechanisms of ergosterol biosynthesis in yeast, we developed growth conditions leading to high or limiting ergosterol levels in wild type and sterol-auxotrophic mutant strains. An excess of sterol is obtained in anaerobic sterol-supplemented cultures of mutant and wild type strains. A low sterol level is obtained in aerobic growth conditions in mutant strains cultured with optimal sterol supplementation and in wild type strain deprived of pantothenic acid, as well as in anaerobic cultures without sterol supplementation. Measurements of the specific activities of acetoacetyl-CoA thiolase, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase (the first three enzymes of the pathway), show that in cells deprived of ergosterol, acetoacetyl-CoA thiolase and HMG-CoA synthase are generally increased. In an excess of ergosterol, in anaerobiosis, the same enzymes are strongly decreased. A 5-10-fold decrease is observed for acetoacetyl-CoA thiolase and HMG-CoA synthase. In contrast, HMG-CoA reductase is only slightly affected by these conditions. These results show that ergosterol could regulate its own synthesis, at least partially, by repression of the first two enzymes of the pathway. Our results also show that exogenous sterols, even if strongly incorporated by auxotrophic mutant cells, cannot suppress enzyme activities in aerobic growth conditions. Measurement of specific enzyme activities in mutant cells also revealed that farnesyl pyrophosphate thwarts the enhancement of the activities of the two first enzymes.  相似文献   

2.
Phenylmethylsulfonyl fluoride (PMSF), a reagent commonly employed for the inhibition of serine proteases, has been found to cause significant inhibition of the incorporation of labeled acetate, but not mevalonate, into nonsaponifiable lipid and digitonin-precipitable sterols in the 10,000 X g supernatant fraction of rat liver homogenate preparations. In two experiments, the extent of inhibition of the synthesis of digitonin-precipitable sterols from acetate by PMSF at 1 mM was 81 and 65%. PMSF inhibited the synthesis of nonsaponifiable lipid from acetate at concentrations as low as 0.1 microM. Preincubation of the 10,000 X g supernatant fraction of rat liver homogenates with PMSF (1 mM) resulted in a significant reduction of the activities of acetate thiokinase and 3-hydroxy-3-methylglutaric acid (HMG)-CoA synthase, but did not affect the activities of acetoacetyl-CoA thiolase. Preincubation of rat liver microsomes with PMSF (1 mM) caused a 50% reduction in the level of HMG-CoA reductase activity. The combined results indicate that major sites of action of PMSF in the inhibition of sterol biosynthesis from labeled acetate appear to be on the activities of acetate thiokinase, HMG-CoA synthase, and HMG-CoA reductase. Another reagent used to inhibit serine proteases, diisopropylfluorophosphate, had (at a concentration of 1 mM) no effect on the activities of cytosolic acetoacetyl-CoA thiolase, HMG-CoA synthase, and HMG-CoA reductase.  相似文献   

3.
4.
In a tobacco mutant callus, containing up to tenfold more sterols than the wild-type genotype, HMG-CoA reductase activity is increased by a factor of approximately three, as is the case in mutant seedlings and plants. The rate of HMG-CoA synthesis from acetyl-CoA by the coupled enzyme system acetoacetyl-CoA thiolase/HMG-CoA synthase, as well as its conversion to acetyl-CoA plus acetoacetate by action of HMG-CoA lyase are not affected. These results confirm the key-regulating role of HMG-CoA reductase in sterol biosynthesis, which seems not to be confined only to the animal kingdom, but can also be extended to plants.  相似文献   

5.
The effects on cholesterol biosynthesis of growth of cultured C-6 glial cells in serumfree medium ± supplementation with linoleic or linolenic acid were studied. Markedly higher activities of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) were observed in cells grown in linoleate- or linolenate-supplemented versus nonsupplemented medium. After 48 h HMG-CoA reductase activities were two-and four-fold higher in cells supplemented with 20 and 100 μm linoleate, respectively. The increase in activity became apparent after 24 h and was marked after 48 h. Rates of incorporation of [14C]acetate or 3H2O into sterols did not reflect the changes in reductase activity. Thus, in cells supplemented with 50 μm linoleate for 24 and 48 h rates of incorporation of [14C]acetate were 75–80% lower than rates in nonsupplemented cells. This difference resulted because over the first 24 h of the experiment a fivefold increase in the rate of sterol synthesis occurred in the nonsupplemented cells, whereas essentially no change occurred in the linoleate-supplemented cells; little further change occurred between 24 and 48 h in the nonsupplemented and the linoleate-supplemented cells. That the difference in sterol synthesis under these experimental conditions could be mediated at the level of HMG-CoA synthase (EC 4.1.3.5) was suggested by two series of findings, i.e., first, similar quantitative and temporal changes in the activity of this enzyme, and, second, no change in the activity of acetoacetyl-CoA thiolase (EC 2.3.1.9) or the incorporation of [14C]mevalonate into sterols. Thus, the data suggest that HMG-CoA synthase, and not HMG-CoA reductase, may direct the rate of cholesterol biosynthesis under these conditions of serum-free growth ± supplementation with polyunsaturated fatty acid.  相似文献   

6.
Many bacteria employ the nonmevalonate pathway for synthesis of isopentenyl diphosphate, the monomer unit for isoprenoid biosynthesis. However, gram-positive cocci exclusively use the mevalonate pathway, which is essential for their growth (E. I. Wilding et al., J. Bacteriol. 182:4319-4327, 2000). Enzymes of the mevalonate pathway are thus potential targets for drug intervention. Uniquely, the enterococci possess a single open reading frame, mvaE, that appears to encode two enzymes of the mevalonate pathway, acetoacetyl-coenzyme A thiolase and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. Western blotting revealed that the mvaE gene product is a single polypeptide in Enterococcus faecalis, Enterococcus faecium, and Enterococcus hirae. The mvaE gene was cloned from E. faecalis and was expressed with an N-terminal His tag in Escherichia coli. The gene product was then purified by nickel affinity chromatography. As predicted, the 86.5-kDa mvaE gene product catalyzed both the acetoacetyl-CoA thiolase and HMG-CoA reductase reactions. Temperature optima, DeltaH(a) and K(m) values, and pH optima were determined for both activities. Kinetic studies of acetoacetyl-CoA thiolase implicated a ping-pong mechanism. CoA acted as an inhibitor competitive with acetyl-CoA. A millimolar K(i) for a statin drug confirmed that E. faecalis HMG-CoA reductase is a class II enzyme. The oxidoreductant was NADP(H). A role for an active-site histidine during the first redox step of the HMG-CoA, reductase reaction was suggested by the ability of diethylpyrocarbonate to block formation of mevalonate from HMG-CoA, but not from mevaldehyde. Sequence comparisons with other HMG-CoA reductases suggest that the essential active-site histidine is His756. The mvaE gene product represents the first example of an HMG-CoA reductase fused to another enzyme.  相似文献   

7.
The compound L-660, 631 (2-oxo-5-(1-hydroxy-2,4,6-heptatriynyl)-1,3-dioxolane-4 heptanoic acid), a natural product isolated from an Actinomycete culture, was found to inhibit rat liver cytosolic acetoacetyl-CoA thiolase, the first step in the cholesterol biosynthesis pathway, with an IC50 of 1.0 x 10(-8) M. The inhibitor had no effect on other sulfhydryl containing enzymes of lipid synthesis such as HMG-CoA synthase, HMG-CoA reductase, and fatty acid synthase. When tested in cultured human liver Hep G2 cells the compound inhibited the incorporation of 14C-acetate and 14C-octanoate into sterols 56% and 48% respectively at 3 x 10(-6) M with no effect on fatty acid synthesis. No noticeable effect was seen on fatty acid biosynthesis. This strongly suggests that the locus of inhibition of acetate incorporation into sterols found with this compound is the acetoacetyl-CoA thiolase step in the cholesterol biosynthesis pathway.  相似文献   

8.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) is an important intermediate in various metabolic pathways, e.g. sterol biosynthesis, ketogenesis and leucine catabolism. The reactions and enzymes involved in the metabolism of HMG-CoA are briefly reviewed. These enzymes have been studied in Catharanthus roseus, a model system for studies on the regulation of secondary metabolic pathways, particularly those leading to terpenoidindole alkaloids. By using HPLC, three HMG-CoA catabolizing enzyme activities have been detected in protein extracts from suspension cultured C. roseus cells: HMG-CoA lyase, 3-nucleotidase and (tentatively identified) 3-methylglutaconyl-CoA hydratase (HMG-CoA hydrolyase). The enzymes have been partially purified. HMG-CoA is formed from three molecules of acetyl-CoA, via reactions which are catalyzed by two (as in yeast and animal cells, via intermediacy of acetoacetyl-CoA) or by just one enzyme (as in e.g. radish). It is yet not clear which process occurs in C. roseus.Abbreviations AACT acetoacetyl-CoA thiolase - AACT/HMGS acetoacetyl-COA thiolase/HMG-CoA synthase - CoASH coenzyme A (reduced form) - HMG-CoA 3-hydroxy-3-methylglutaryl-CoA - MG-CoA 3-methylglutaconyl-CoA  相似文献   

9.
10.
Our group and others have recently demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biosynthesis that previously were considered to be cytosolic or located in the endoplasmic reticulum (ER). Peroxisomes have been shown to contain HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase, and FPP synthase. Four of the five enzymes required for the conversion of mevalonate to FPP contain a conserved putative PTS1 or PTS2, supporting the concept of targeted transport into peroxisomes. To date, no information is available regarding the function of the peroxisomal HMG-CoA reductase in cholesterol/isoprenoid metabolism, and the structure of the peroxisomal HMG-CoA reductase has yet to be determined. We have identified a mammalian cell line that expresses only one HMG-CoA reductase protein, and which is localized exclusively to peroxisomes, to facilitate our studies on the function, regulation, and structure of the peroxisomal HMG-CoA reductase. This cell line was obtained by growing UT2 cells (which lack the ER HMG-CoA reductase) in the absence of mevalonate. The surviving cells exhibited a marked increase in a 90-kD HMG-CoA reductase that was localized exclusively to peroxisomes. The wild-type CHO cells contain two HMG-CoA reductase proteins, the well-characterized 97-kD protein localized in the ER, and a 90-kD protein localized in peroxisomes. We have also identified the mutations in the UT2 cells responsible for the lack of the 97-kD protein. In addition, peroxisomal-deficient Pex2 CHO cell mutants display reduced HMG-CoA reductase levels and have reduced rates of sterol and nonsterol biosynthesis. These data further support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis.  相似文献   

11.
Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis.  相似文献   

12.
The presence of two types of thiolases, acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase, was demonstrated in peroxisomes of n-alkane-grown Candida tropicalis [Kurihara, T., Ueda, M., & Tanaka, A. (1989) J. Biochem. 106, 474-478], while acetoacetyl-CoA thiolase was also shown to be present in cytosol. The activity of the enzyme in cytosol was constant irrespective of culture conditions, while the peroxisomal enzyme was inducibly synthesized in the alkane-grown yeast cells. These results indicate that peroxisomal acetoacetyl-CoA thiolase participates in alkane degradation, while the cytosolic enzyme is associated with other fundamental metabolic processes, probably sterol biosynthesis, because this enzyme can catalyze the first step of the sterol biosynthesis. 3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase, a key regulatory enzyme of sterol biosynthesis, was found to be localized exclusively in microsomes of the alkane-grown yeast cells. These results suggest that yeast peroxisomes do not contribute to sterol biosynthesis, unlike the case of mammalian cells.  相似文献   

13.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

14.
We have studied the regulated degradation of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase within the endoplasmic reticulum in cells permeabilized with digitonin. Using Chinese hamster ovary cells transfected with a plasmid encoding HMGal, a chimeric protein containing the membrane domain of HMG-CoA reductase coupled to beta-galactosidase, we have demonstrated mevalonate and sterol-stimulated loss of beta-galactosidase activity. In pulse-chase experiments we have demonstrated mevalonate-stimulated degradation of both HMGal and HMG-CoA reductase. The rate of mevalonate-stimulated degradation observed in permeabilized cells tends to be slightly slower than that observed in intact cells treated with mevalonate and is dependent upon incubation of cells with mevalonate prior to permeabilization. The degradation process measured in this report extends a previous report of HMG-CoA reductase degradation in digitonin-permeabilized cells (Leonard, D. A., and Chen, H. W. (1987) J. Biol. Chem. 262, 7914-7919) by mimicking key physiological features of the in vivo process, including: stimulation by regulatory molecules, specifically mevalonate and sterols; inhibition by cycloheximide; and inhibition by an inhibitor of neutral cysteine proteases.  相似文献   

15.
The five-carbon metabolic intermediate isopentenyl diphosphate constitutes the basic building block for the biosynthesis of all isoprenoids in all forms of life. Two distinct pathways lead from amphibolic intermediates to isopentenyl diphosphate. The Gram-positive cocci and certain other pathogenic bacteria employ exclusively the mevalonate pathway, a set of six enzyme-catalyzed reactions that convert 3 mol of acetyl-CoA to 1 mol each of carbon dioxide and isopentenyl diphosphate. The survival of the Gram-positive cocci requires a fully functional set of mevalonate pathway enzymes. These enzymes therefore represent potential targets of inhibitors that might be employed as antibiotics directed against multidrug-resistant strains of certain bacterial pathogens. A rapid throughput, bioreactor-based assay to assess the effects of potential inhibitors on several enzymes simultaneously should prove useful for the survey of candidate inhibitors. To approach this goal, and as a proof of concept, we employed enzymes from the Gram-positive pathogen Enterococcus faecalis. Purified recombinant enzymes that catalyze the first three reactions of the mevalonate pathway were immobilized in two kinds of continuous flow enzyme bioreactors: a classical hollow fiber bioreactor and an immobilized plug flow bioreactor that exploited a novel method of enzyme immobilization. Both bioreactor types employed recombinant acetoacetyl-CoA thiolase, HMG-CoA synthase, and HMG-CoA reductase from E. faecalis to convert acetyl-CoA to mevalonate, the central intermediate of the mevalonate pathway. Reactor performance was monitored continuously by spectrophotometric measurement of the concentration of NADPH in the reactor effluent. Additional potential applications of an Ni(++) affinity support bioreactor include using recombinant enzymes from extremophiles for biosynthetic applications. Finally, linking a Ni(++) affinity support bioreactor to an HPLC-mass spectrometer would provide an experimental and pedagogical tool for study of metabolite flux and pool sizes of intermediates to model regulation in intact cells.  相似文献   

16.
Biosynthesis of the isoprenoid precursor, isopentenyl diphosphate, is a critical function in all independently living organisms. There are two major pathways for this synthesis, the non-mevalonate pathway found in most eubacteria and the mevalonate pathway found in animal cells and a number of pathogenic bacteria. An early step in this pathway is the condensation of acetyl-CoA and acetoacetyl-CoA into HMG-CoA, catalyzed by the enzyme HMG-CoA synthase. To explore the possibility of a small molecule inhibitor of the enzyme functioning as a non-cell wall antibiotic, the structure of HMG-CoA synthase from Enterococcus faecalis (MVAS) was determined by selenomethionine MAD phasing to 2.4 A and the enzyme complexed with its second substrate, acetoacetyl-CoA, to 1.9 A. These structures show that HMG-CoA synthase from Enterococcus is a member of the family of thiolase fold enzymes and, while similar to the recently published HMG-CoA synthase structures from Staphylococcus aureus, exhibit significant differences in the structure of the C-terminal domain. The acetoacetyl-CoA binary structure demonstrates reduced coenzyme A and acetoacetate covalently bound to the active site cysteine through a thioester bond. This is consistent with the kinetics of the reaction that have shown acetoacetyl-CoA to be a potent inhibitor of the overall reaction, and provides a starting point in the search for a small molecule inhibitor.  相似文献   

17.
18.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

19.
At least three different subcellular compartments, including peroxisomes, are involved in cholesterol synthesis. Recently, it has been demonstrated that peroxisomes contain a number of enzymes involved in cholesterol biogenesis that previously were considered to be cytosolic or located in the endoplasmic reticulum. Peroxisomes have been shown to contain acetoacetyl-CoA thiolase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, phosphomevalonate decarboxylase, isopentenyl diphosphate isomerase and FPP synthase. Moreover, the activities of these enzymes are also significantly decreased in liver tissue and fibroblast cells obtained from patients with peroxisomal deficiency diseases. In addition, the cholesterol biosynthetic capacity is severely impaired in cultured skin fibroblasts obtained from patients with peroxisomal deficiency diseases. These findings support the proposal that peroxisomes play an essential role in isoprenoid biosynthesis. This paper presents a review of peroxisomal protein targeting and of recent studies demonstrating the localization of cholesterol biosynthetic enzymes in peroxisomes and the identification of peroxisomal targeting signals in these proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号