首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkaline phosphatase [orthophosphoric monoester phosphohydrolase, EC 3.1.3.1] was purified from the mucosa of rat small intestine by butanol extraction, ethanol fractionation, gel filtration, with controlled-pore glass-10 and DEAE-cellulose column chromatography. On the gel filtration, the enzyme activity was separated into three peaks; A in the void volume, B and C at lower molecular weight positions. Enzyme A was purified to homogeneity. The activity of enzymes A, B, and C was detected even on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at the position of the protein of enzyme A, which had a molecular weight of 110,000 daltons. Enzymatic properties such as pH optimum, Km value for the substrate, heat inactivation and inhibition by amino acids were the same in all three enzymes. Based on these findings, together with the elution positions on gel filtration, enzyme A was regarded as an aggregate, and enzymes B and C as dimer and monomer molecules, respectively.  相似文献   

2.
Tyrosinase which is a tissue-specific enzyme in the pigment cells of the brain of the ascidian embryo, is thought to be synthesized with activation of appropriate genes, and the enzyme synthesis begins at the early tailbud stage. If embryos at early cleavage stages up to the 64-cell stage are continuously treated with aphidicolin (a specific inhibitor of DNA synthesis), cleavage of the embryos is arrested and they do not differentiate the enzyme. However, the early gastrulae and embryos at later stage that have been permanently arrested with aphidicolin do produce the enzyme. Alkaline phosphatase, a tissue-specific enzyme of the endodermal cells, has been shown to be synthesized by a preformed maternal mRNA and is first detected histochemically at the late gastrula stage. If embryos at early cleavage stages up to the 16-cell stage are prevented from undergoing further divisions with aphidicolin, the arrested embryos do not form the enzyme. However, embryos at the 32-cell and later stages that have been permanently arrested with aphidicolin are able to differentiate the enzyme activity. These results suggest that several DNA replications are required for the histospecific enzyme development in ascidian embryos.  相似文献   

3.
Tyrosinase which is a tissue-specific enzyme in the pigment cells of the brain of the ascidian embryo, is thought to be synthesized with activation of appropriate genes, and the enzyme synthesis begins at the early tailbud stage. If embryos at early cleavage stages up to the 64-cell stage are continuously treated with aphidicolin (a specific inhibitor of DNA synthesis), cleavage of the embryos is arrested and they do not differentiate the enzyme. However, the early gastrulae and embryos at later stages that have been permanently arrested with aphidicolin do produce the enzyme. Alkaline phosphatase, a tissue-specific enzyme of the endodermal cells, has been shown to be synthesized by a preformed maternal mRNA and is first detected histochemically at the late gastrula stage. If embryos at early cleavage stages up to the 16-cell stage are prevented from undergoing further divisions with aphidicolin, the arrested embryos do not form the enzyme. However, embryos at the 32-cell and later stages that have been permanently arrested with aphidicolin are able to differentiate the enzyme activity. These results suggest that several DNA replications are required for the histospecific enzyme development in ascidian embryos.  相似文献   

4.
Alkaline phosphatase activity in extracts of testes of sexually immature (13 days old) and sexually mature rats has been characterized by its heat sensitivity, the extent of inhibition by homoarginine and phenylalanine, and by polyacrylamide gel electrophoresis. The testicular enzyme appears to be a liver-bone-kidney-type alkaline phosphatase. There are no significant differences in the properties of the enzyme from animals of these two ages. Spermatocytes and early spermatids contain very little alkaline phosphatase activity; the specific activity of a nonflagellate germinal cell suspension is only 1/20th that of the whole testis. Since the constant level of activity in immature and mature animals is not consistent with the enzyme activity being present only in late spermatids, we conclude that the majority of the testicular enzyme is present in nongerminal cells. The presence of alkaline phosphatase in plasma membrane purified from testes of adult rats was demonstrated.  相似文献   

5.
Alkaline phosphatase was purified from plasma membranes of rat ascites hepatoma AH-130, the homogenate of which had 50-fold higher specific activity than that found in the liver homogenate. The presence of Triton X-100, 0.5%, was essential to avoid its aggregation and to stabilize its activity. The purified enzyme, a glycoprotien, was homogeneous in polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a protein molecular weight of 140,000. The addition of beta-mercaptoethanol caused the dissociation of the alkaline phosphatase into two subunits of identical molecular weight, 72,000. Isoelectric focusing revealed that the pI of this enzyme is 4.7. The pH optimum for the purified enzyme was 10.5 or higher with p-nitrophenylphosphate, and slightly lower pH values (pH 9.5--10.2) were obtained when other substrates were used. Of the substrates tested, p-nitrophenylphosphate (Km-0.3 mM) was most rapidly hydrolyzed. Vmax values of other substrates relative to that of p-nitrophenylphosphate were as follows; beta-glycerophosphate, 76%; 5'-TMP, 82%; 5'-AMP, 62%; 5'-IMP, 43%; glucose-6-phosphate, 39%; ADP, 36% and ATP, 15%. More than 90% of the activity of the purified enzyme was irreversibly lost when it was heated at 55 degrees C for 30 min, or exposed either to 10 mM beta-mercaptoethanol for 10 min to 3 M urea for 30 min, or to an acidic pH below pH 5.0 for 2 h. Of the effects by divalent cations, Mg2+ activated the enzyme by 20% whereas Zn2+ strongly inhibited it by 95% at 0.5 mM. EDTA at higher than 1 mM inactivated the enzyme irreversibly, although the effect of EDTA at lower than 0.1 mM was reversible by the addition of divalent cations, particularly by Mg2+. The enzyme was most strongly inhibited by L-histidine among the amino acids tested, and also strongly inhibited by imidazole. These results suggest that alkaline phosphatase of rat hepatoma AH-130 is very similar to that of rat liver in most of the properties reported so far.  相似文献   

6.
Alkaline phosphatase [EC 3.1.3.1.] was purified about 250-fold from rat kidney, and its enzymological properties were studied. Kidney homogenate was extracted with n-butanol, passed through Sephadex G-200 and chromatographed on a DEAE-cellulose column. The peak from the DEAE-cellulose column was subjected to isoelectric focusing, and the alkaline phosphatase activity was separated into two peaks. The molecular weights of alkaline phosphatase in these peaks were 4.8.X10(4) and 1.0X10(5), as determined by SDS-polyacrylamide gel electrophoresis. Anti-serum against alkaline phosphatase from rat kidney was prepared, and was shown to neutralize the activity from kidney, liver or bone, but not that from intestine.  相似文献   

7.
Alkaline phosphatase has been solubilized from porcine intestinal mucosa by two different methods: treatment of the mucosa by Emulphogen BC 720 and papain hydrolysis of enterocyte brush border membrane vesicles. Two different enzyme forms have been obtained by these methods.The two enzyme forms (‘detergent form’ and ‘papain form’) have been purified to homogeneity by similar techniques and exhibit closely related molecular characteristics. However, the detergent form displays a hydrophobic behaviour and aggregates in media free of detergent. The two forms can be differentiated by their electrophoretic mobility on polyacrylamide gel in the absence of sodium dodecyl sulphate.By electrophoresis on polyacrylamide gel in the presence of sodium dodecyl sulphate, it has been shown that the detergent and papain forms of alkaline phophatase are dimers consisting of two apparently identical subunits whose molecular weights are 64 000 and 61 000, respectively. The difference between these molecular weights has been attributed to the existence of a hydrophobic region in the detergent form which is present on each subunit.  相似文献   

8.
Alkaline phosphatase catalyzes the hydrolysis of phosphomonoesters and is widely used in molecular biology techniques and clinical diagnostics. We expressed a recombinant alkaline phosphatase of the marine bacterium, Cobetia marina, in Escherichia coli BL21 (DE3). The recombinant protein was purified with a specific activity of 12,700 U/mg protein, which is the highest activity reported of any bacterial alkaline phosphatase studied to date. The molecular mass of the recombinant protein was 55–60 kDa, as determined by SDS–PAGE, and was observed to be a dimer by gel filtration analysis. The enzyme was optimally active at 45°C and the recombinant alkaline phosphatase efficiently hydrolyzed a phosphoric acid ester in luminescent and fluorescent substrates. Therefore, this enzyme can be considered to be extremely useful as a label conjugated to an antibody.  相似文献   

9.
The effect of pH during formalin fixation on acid phosphatases in human tissues was studied. Lysosomal-type acid phosphatase was sensitive to alkaline fixation, being completely inactive after fixation at pH 9.0. Prostatic and tartrate-resistant osteoclastic/macrophagic types were alkaline fixation-resistant, as was an acid phosphatase localized in endothelium, endometrial stromal cells and intestinal nerves. The latter activity was further separable into fluoride- and tartrate-sensitive beta-glycerophosphatase and fluoride-sensitive, tartrate-resistant alpha-naphthyl phosphatase. The activities appeared to represent either different, tightly associated enzymes or separate activity centres of a single enzyme. Alkaline fixation-resistant alpha-naphthyl phosphatase at endothelial, endometrial and neuronal sites was also well demonstrated in unfixed or neutral formalin-fixed sections as tartrate-resistant activity similar to classical tartrate-resistant acid phosphatase, but these phosphatases appear to be antigenically different. Alkaline fixation-resistant acid phosphatase showed a restricted tissue distribution both in endothelium (mainly in vessels of abdominal organs) and at neuronal sites (only in intestinal nerves). Alkaline fixation-resistant acid phosphatase appears to represent a previously unknown or uncharacterized enzyme activity whose chemical properties could not be classified as any previously known type of acid or other phosphatases.  相似文献   

10.
Alkaline phosphatase activity in rat hepatoma cells (R-Y121B) cultured in a monolayer at 0.5% serum was enhanced by serum, bovine serum albumin, casein and gamma-globulin, but ovalbumin, polyvinylpyrrolidone, dexamethasone, insulin and dibutyrylcyclic AMP showed little effect on alkaline phosphatase activity. In addition, cycloheximide, actinomycin D, chloroquine, dinitrophenol and potassium cyanide also increased the enzyme activity, although the incorporation of [14C]leucine into cellular proteins was almost completely inhibited in the presence of these cytotoxic substances. When R-Y121B cell homogenates were incubated at 37 degrees C, alkaline phosphatase activity increased in a pH-dependent manner: the maximal increase was observed at pH 7.1. The magnitudes of the increase differed among cell homogenates and a 4- to 10-fold increase was observed. Alkaline phosphatase in R-Y121B cells was apparently heat-stable, but that in the cells obtained from various treatments was heat labile and the latter activity decreased to less than 50% of the initial activity after 15 min of incubation at 56 degrees C. Alkaline phosphatase in the control and also in the treated cells was more sensitive to L-homoarginine than L-phenylalanine. The Lineweaver-Burk plot showed that the increases in the enzyme activity were accompanied by changes not only in V but also in Km for alkaline phosphatase reaction. Finally, it has been suggested that the increases in alkaline phosphatase activity under various conditions are due to the conversion of the molecule with a low enzyme activity to the molecule with a high enzyme activity in R-Y121B cells.  相似文献   

11.
The physico-chemical properties of phosphoprotein phosphatase (EC 1.3.1.16) from bovine spleen cell nuclei were investigated. The enzyme was shown to possess a wide substrate specificity and to catalyze dephosphorylation of phosphocasein, ATP, ADP and p-nitrophenylphosphate (pNPP). The Km values for ATP, ADP and pNPP are 0.44, 0.43 and 1.25 mM, respectively. The molecular weight of the enzyme as determined by gel filtration on Sephadex G-75 and electrophoresis in polyacrylamide gel of different concentrations is approximately 33 000. SDS-polyacrylamide gel electrophoresis revealed two protein bands with Mr 12 000 and 18 000. The enzyme molecule predominantly contains acidic amino acid residues, two free SH-groups and two disulphide bonds. Phosphoprotein phosphatase is a glycoprotein with the carbohydrate content of about 22%, and has an additional absorption maximum at 560 nm. The enzyme is competitively inhibited by ammonium molybdate (Ki = 0.37 microM) and non-competitively by sodium fluoride (Ki = 1.3 mM). Incubation of phosphoprotein phosphatase with 2 mM phenylmethylsulfonylfluoride (PMSF) for 25 hours resulted in a approximately 46% loss of the enzyme activity. Ammonium molybdate, sodium fluoride and PMSF reversibly inhibit the enzyme. Modification of aminoacid SH-groups, NH2-groups and histidine led to a decrease of the enzyme activity. Incubation of phosphoprotein phosphatase with [gamma-33P]ATP resulted in the incorporation of 0.33 mol of 33P per mol of the enzyme. The mechanism of the enzyme-catalyzed hydrolysis of the phosphoester bond is discussed.  相似文献   

12.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

13.
Alkaline phosphatase (orthophosphoric-monoester phosphohydrolase [alkaline optimum], EC 3.1.3.1) expressed in two human osteosarcoma cell lines (Saos-2 and KTOO5) in culture was the tissue nonspecific type and was released from the plasma membrane by phosphatidylinositol (PI) phospholipase C. Despite a difference of 10-fold between the two cell lines in the amount of alkaline phosphatase expressed, the phospholipase solubilized nearly all of the phosphatase from resuspended cells of the two lines. Alkaline phosphatase released with Nonidet-P40 from Saos-2 cells had a Mr of 445,000 by gradient gel electrophoresis in the absence of detergent; that released by PI-phospholipase C was 200,000. The subunit Mr of both solubilized forms was 86,000. Thus, tetrameric alkaline phosphatase in the membrane is attached by a PI-glycan moiety and is converted to dimers when released by PI-phospholipase C. Tunicamycin treatment of Saos-2 cells in culture affected the release of alkaline phosphatase by a high concentration of PI-phospholipase C, but not by a low concentration; both the rate and extent of release were lower from treated cells. However, the enzyme released from the treated cells was in two forms with different molecular weights; it seems that both glycosylated and nonglycosylated dimers were transported to the cell surface and incorporated into the plasma membrane. Glycosylation does not appear to be necessary for alkaline phosphatase to be anchored in the membrane via PI.  相似文献   

14.
Alkaline phosphatase from chicken intestine was purified from the crude preparation employing three-phase partitioning and by the use of phenyl Sepharose-6B in the batch mode. TPP uses a combination of ammonium sulphate and t-butanol to precipitate proteins from crude aqueous extracts. The precipitated protein forms interface between lower aqueous phase and upper organic solvent phase. The fold purification of the finally purified enzyme was 80 and the activity recovery was 61%. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of enzyme showed considerable purification and its molecular weight was found to be around 67 kDa.  相似文献   

15.
Purification and characterization of phytase from rat intestinal mucosa.   总被引:1,自引:0,他引:1  
Phytase (myo-inositol hexakisphosphate phosphohydrolase; EC 3.1.3.8 or 3.1.3.26) was purified from rat intestinal mucosa. The purified enzyme preparation exhibited two protein bands on SDS-polyacrylamide gel electrophoresis with estimated molecular masses of 70 kDa and 90 kDa. Rabbit antisera prepared against the 90K subunit cross-reacted with the 70K subunit on immunoblotting. The peptide maps of the 70K and 90K subunits were similar, and the N-terminal amino acid sequences of the two subunit proteins were almost identical. Treatments to remove sugar moieties from the proteins showed that the two subunit proteins had different oligosaccharide chains, although the difference in their molecular masses was not due to the difference in their oligosaccharide compositions. The purified enzyme also showed activity of alkaline phosphatase (orthophosphoric monoester phosphohydrolase; EC 3.1.3.1), but the properties of the two enzyme activities were different; the optimum pH for phytase activity was 7.5, while that for alkaline phosphatase was 10.4. Phytase activity did not necessarily require divalent cations, while Mg2+ was essential for alkaline phosphatase activity. Phenylalanine, a specific inhibitor of intestine-type alkaline phosphatase had no effect on the phytase activity.  相似文献   

16.
1. Phosphoprotein phosphatase IB is a form of rat liver phosphoprotein phosphatase, distinguished from the previously studied phosphoprotein phosphatase II [Tamura et al. (1980) Eur. J. Biochem. 104, 347-355] by earlier elution from DEAE-cellulose, by higher molecular weight on gel filtration (260000) and by lower activity toward phosphorylase alpha. This enzyme was purified to apparent homogeneity by chromatography on DEAE-cellulose, aminohexyl--Sepharose-4B, histone--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200. 2. The molecular weight of purified phosphatase IB was 260000 by gel filtration and 185000 from S20,W and Stokes' radius. Using histone phosphatase activity as the reference for comparison, the phosphorylase phosphatase activity of purified phosphatase IB was only one-fifth that of phosphatase II. 3. Sodium dodecyl sulfate gel electrophoresis revealed that phosphatase IB contains three types of subunit, namely alpha, beta and gamma, whose molecular weights are 35000, 69000 and 58000, respectively. The alpha subunit is identical to the alpha subunit of phosphatase II. While the beta subunit is also identical or similar to the beta subunit of phoshatase II, the gamma subunit appears to be unique to phosphatase IB. 4. When purified phosphatase IB was treated with 2-mercaptoethanol at -20 degrees C, the enzyme was dissociated to release the catalytically active alpha subunit. Along with this dissociation, there was a 7.4-fold increase in phosphorylase phosphatase activity; but histone phosphatase activity increased only 1.6-fold. The possible functions of the gamma subunit are discussed in relation to this activation of enzyme.  相似文献   

17.
When a rat hepatoma cell (R-Y121B) homogenate was incubated at 37 degrees C, 30-70% of the total alkaline phosphatase was released into the supernatant fluid from the precipitate fractions. The release reached a plateau level after 10 h of incubation at 37 degrees C. The optimum pH value for the release was 7.4. Alkaline phosphatase activity increased during the incubation of the cell homogenates, but this increase was independent of the enzyme release. Serum increased not only alkaline phosphatase activity in the cultured cells but also enzyme release in their homogenates. In addition, we examined a rat liver homogenate and the following 11 cell lines: 3 hepatoma cell lines, including the R-Y121B cell line, 4 liver cell lines, 2 human urinary bladder carcinoma cell lines, a kidney cell line, and a mouse adrenal tumor cell line. Only in the cultured liver cell line and hepatoma cell lines, 30-60% of the total enzyme was released into the soluble fraction from the precipitate fractions; the release was not observed in the other cell lines, nor in the rat liver homogenate. The release of alkaline phosphatase took place in both heat-stable and heat-labile alkaline phosphatases. Alkaline phosphatase, extracted from cell homogenates, showed two bands during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The mobilities of the two bands changed inversely with or without sodium dodecyl sulfate. In general, the alkaline phosphatase which showed slow mobility with sodium dodecyl sulfate was more readily released from the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
黄鳝碱性磷酸酶的分离纯化及其部分性质研究   总被引:5,自引:0,他引:5  
经Tris-HCl缓冲液(pH8.6)抽提,正丁醇处理,30%-75%硫酸铵分级沉淀分离,DEAE-Sepharose离子交换柱层析,Sephacryl S-200凝胶过滤纯化,从黄鳝内脏组织中分离纯化出电泳纯的碱性磷酸酶。该酶提纯倍数为564倍,比活力达到3015U/mg。酶学性质和动力学性质研究表明,该酶催化磷酸苯二钠的水解反应,最适pH值为10.2,pH小于7和大于12均不稳定;最适温度为40℃,温度高于50℃不稳定;米氏常数Km值为1.17mmo1/L。金属离子对该酶的催化活力有不同的影响,K+对该酶活力无影响,Mg2+对该酶有激活作用,Zn2+对该酶有抑制作用。    相似文献   

19.
Low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase is largely expressed in chick brain tissue during development. The enzyme was purified from brain extract prepared from 19-day-old chick embryos and from adult chickens using ammonium sulfate fractionation, gel filtration on Sephadex G-75 and two DEAE-Cellulose ion-exchange chromatography steps. The purified enzymes from embryo and adult chick brains show identical molecular weight values (about 18-20 kDa) and biochemical and structural properties such as substrate specificity, sensitivity to inhibitors, and number of free reactive sulphydryl groups. These data suggest that they are the same enzyme protein. Although the total acid phosphatase activity does not change appreciably during development, the activity associated with the low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase markedly increases after birth and reaches the adult values within the first week of life. Taken together, our results suggest an involvement of the low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase in postnatal development and maturation of chick brain tissue. The variations in tyrosine phosphorylation profile of chick brain polypeptides analyzed by Western blotting at the same developmental stages are also reported.  相似文献   

20.
We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号