首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
There are DnaA protein-binding sites in at least one F origin of replication, and only potentially leaky dnaA(Ts) mutations had ever been used in previous studies indicating that F replication was independent of the dnaA gene product. Here we show that an Escherichia coli dnaA::Tn10 host which does not make a dnaA gene product cannot sustain autonomous or integrated F plasmid maintenance.  相似文献   

2.
3.
E protein, the 29 kd product of the F plasmid repE gene, plays both positive and negative roles in the autoregulation of F replication. We have cloned and expressed the repE gene in an inducible ATG-fusion vector and have detected specific binding of E protein to the repE operator and to four 19-base pair direct repeats (incB) within the F plasmid replication origin ori2. Binding of E protein at the repE operator occurs with higher affinity than at ori2(incB) and gives almost complete protection to at least 30 base pairs, whereas binding of E protein to the direct repeats in the ori2 region shows an alternating pattern of enhanced and reduced sensitivity to DNAase cleavage consistent with a protein-induced folding of the DNA. These results provide direct biochemical support for a model of F plasmid replication in which the E protein serves both as an initiator of replication and as an autorepressor of its own synthesis.  相似文献   

4.
The DNA sequence of a 2,100-bp region containing the argE gene from Escherichia coli has been determined. The nucleotide sequence of the ppc-argE intergenic region was also solved and shown to contain six tandemly repeated REP sequences. Moreover, the oxyR gene has been mapped on the E. coli chromosome and shown to flank the arg operon. The codon responsible for the translation start of argE was determined by using site-directed mutants. This gene spans 1,400 bp and encodes a 42,350-Da polypeptide. The argE3 allele and a widely used argE amber gene have also been cloned and sequenced. N-Acetylornithinase, the argE product, has been overproduced and purified to homogeneity. Its main biochemical and catalytic properties are described. Moreover, we demonstrate that the protein is composed of two identical subunits. Finally, the amino acid sequence of N-acetylornithinase is shown to display a high degree of identity with those of the succinyldiaminopimelate desuccinylase from E. coli and carboxypeptidase G2 from a Pseudomonas sp. It is proposed that this carboxypeptidase might be responsible for the acetylornithinase-related activity found in the Pseudomonas sp.  相似文献   

5.
Isolation and characterization of the Escherichia coli mutH gene product   总被引:28,自引:0,他引:28  
The Escherichia coli mutH gene product has been isolated in near homogeneous form using an in vitro complementation assay for DNA mismatch correction (Lu, A.-L., Clark, S., and Modrich, P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4639-4643) which is dependent on mutH function. The protein has a subunit Mr of 25,000, and purified preparations contain a Mg2+-dependent endonuclease activity which cleaves 5' to the dG of d(GATC) sequences to generate 5'-phosphoryl and 3'-hydroxyl termini. Symmetrically methylated d(GATC) sites are resistant to the endonuclease, hemimethylated sequences are cleaved on the unmethylated strand, and unmethylated d(GATC) sites are usually subject to scission on only one DNA strand. Although this endonuclease activity is extremely weak (less than 1 scission/h/mutH monomer equivalent) and cleavage at a d(GATC) site does not depend on the presence of a mismatched base pair within the DNA substrate, the activity does not appear to be a contaminant of mutH preparations. d(GATC) endonuclease activity and mutH complementing activity co-purify through multiple column steps without change in relative specific activities, and both activities co-electrophorese under native conditions. These findings suggest that the mutH product functions at the strand discrimination stage of mismatch correction and that this stage of the reaction involves scission of the unmethylated DNA strand.  相似文献   

6.
The dnaJ and dnaK genes are essential for replication of Escherichia coli DNA, and they constitute an operon, dnaJ being downstream from dnaK. The amount of the dnaJ protein in E. coli is substantially less than that of the dnaK protein, which is produced abundantly. In order to construct a system that over-produces the dnaJ protein, we started our study by determining the DNA sequence of the entire dnaJ gene, and an operon fusion was constructed by inserting the gene downstream of the lambda PL promoter of an expression vector plasmid, pPL-lambda. Cells containing the recombinant plasmid produced dnaJ protein amounting to 2% of the total cellular protein when cells were induced. The overproduced protein was purified, and Edman degradation of the protein indicated that the NH2-terminal methionine was found to be processed. From the DNA sequence of the dnaJ gene, the processed gene product is composed of 375 amino acid residues, and its molecular weight is calculated to be 40,975.  相似文献   

7.
Isolation and characterization of the Escherichia coli mutL gene product   总被引:33,自引:0,他引:33  
The Escherichia coli mutL gene product has been purified to near homogeneity from an overproducing clone. The mutL locus encodes a polypeptide of 70,000 daltons as determined by denaturing gel electrophoresis. The native molecular weight of MutL protein as calculated from the sedimentation coefficient of 5.5 S and Stokes radius of 61 A is 139,000 daltons, indicating that MutL exists as a dimer in solution. In addition to its ability to complement methyl-directed DNA mismatch repair in mutL-deficient cell-free extracts, DNase I protection experiments demonstrate that the purified MutL protein interacts with the MutS-heteroduplex DNA complex in the presence of ATP.  相似文献   

8.
A new family of highly conserved genes, designated rho, has recently been isolated and characterized (P. Madaule and R. Axel, Cell 41:31-40, 1985). These genes have been found in Saccharomyces cerevisiae, Drosophila melanogaster, rats, and humans, and their 21,000-dalton products are highly homologous. The rho p21 protein shares 35% amino acid homology with the Harvey ras p21 protein and on this basis has been proposed to be a G protein. We expressed the Aplysia californica rho gene in Escherichia coli and purified its p21 protein to more than 90% purity. The availability of the rho protein in high quantities made it possible to establish its high affinity for guanine nucleotides. The rho p21 protein had nucleotide-binding properties similar to those of the ras p21 protein. However, a comparison of these proteins revealed some important differences regarding their specificities and affinities. Finally, the rho p21 protein had GTPase activity almost identical to that of a normal ras p21 protein, the rates being 0.106 and 0.105 mol/min per mol of p21, respectively. Thus, the results suggest that the degree of homology found between the ras and rho genes products most likely is related to the conservation of sequences relevant to their ability to bind and hydrolyze guanine nucleotides. The fact that the rho p21 protein binds and hydrolyzes GTP strongly suggests that it is a G protein with a potential regulatory function conserved in evolution.  相似文献   

9.
10.
F plasmid ccd mechanism in Escherichia coli.   总被引:2,自引:7,他引:2       下载免费PDF全文
The ccd mechanism specified by the ccdA and ccdB genes of the mini-F plasmid determines fate of plasmid-free segregants in Escherichia coli (Jaffé et al., J. Bacteriol. 163:841-849, 1985). The killing function in plasmid-free segregants by the ccd mechanism did not affect cell growth of coexisting cells in the same culture. Elongated cells and anucleate cells caused by the ccd mechanism were clearly detected by flow cytometry in cultures of bacterial strains harboring Ccd+ Sop- mini-F plasmids defective in partitioning. This indicates that the defect in correct partitioning of plasmid DNA molecules into daughter cells also induces the ccd mechanism to operate.  相似文献   

11.
We report a rapid procedure for the large-scale purification of the Escherichia coli encoded single-strand binding (SSB) protein, helix-destabilizing protein which is essential for replication, recombination, and repair processes in E. coli. To facilitate the isolation of large quantities of the ssb gene product, we have subcloned the ssb gene into a temperature-inducible expression vector, pPLc28 [Remaut, E., Stanssens, P., & Fiers, W. (1981) Gene 15, 81-93], carrying the bacteriophage lambda PL promoter. A large overproduction of the ssb gene product results upon shifting the temperature of E. coli strains which carry the plasmid and also produce the thermolabile lambda cI857 repressor. After 5 h of induction, the ssb gene product represents approximately 10% of the total cell protein. The overexpression of the ssb gene and the purification protocol reported here enable one to isolate SSB protein (greater than 99% pure) with final yields of approximately 3 mg of SSB protein/g of cell paste. In fact, very pure (greater than 99%) SSB protein can be obtained after approximately 8 h, starting from frozen cells in the absence of any columns, although inclusion of a single-stranded DNA-cellulose column is generally recommended to ensure that the purified SSB protein possesses DNA binding activity. The ability to easily purify 1 g of SSB protein from 300-350 g of induced cells will facilitate physical studies requiring large quantities of this important protein.  相似文献   

12.
The traY gene product (TraYp) from the Escherichia coli F factor has previously been purified and shown to bind a DNA fragment containing the F plasmid oriT region (E. E. Lahue and S. W. Matson, J. Bacteriol. 172:1385-1391, 1990). To determine the precise nucleotide sequence bound by TraYp, DNase I footprinting was performed. The TraYp-binding site is near, but not coincident with, the site that is nicked to initiate conjugative DNA transfer. In addition, a second TraYp binding site, which is coincident with the mRNA start site at the traYI promoter, is described. The Kd for each binding site was determined by a gel mobility shift assay. TraYp exhibits a fivefold higher affinity for the oriT binding site compared with the traYI promoter binding site. Hydrodynamic studies were performed to show that TraYp is a monomer in solution under the conditions used in DNA binding assays. Early genetic experiments implicated the traY gene product in the site- and strand-specific endonuclease activity that nicks at oriT (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980; S. McIntire and N. Willetts, Mol. Gen. Genet. 178:165-172, 1980). As this activity has recently been ascribed to helicase I, it was of interest to see whether TraYp had any effect on this reaction. Addition of TraYp to nicking reactions catalyzed by helicase I showed no effect on the rate or efficiency of oriT nicking. Roles for TraYp in conjugative DNA transfer and a possible mode of binding to DNA are discussed.  相似文献   

13.
C Wada  T Yura 《Journal of bacteriology》1984,160(3):1130-1136
Replication of F (including mini-F) and some related plasmids is known to be specifically inhibited in mafA mutants of Escherichia coli K-12. We have now isolated and characterized mini-F mutants that can overcome the replication inhibition. Such plasmids, designated pom (permissive on maf), were obtained spontaneously or after mutagenesis with hydroxylamine or by transposon (Tn3) insertion. In addition to their ability to replicate in mafA mutant bacteria, the pom mutant plasmids exhibit an increased copy number and resistance to "curing" by acridine dye in the mafA+ host. In agreement with these results, Tn3-induced pom mutants were found to carry Tn3 inserted at the incC region of mini-F DNA, known to be involved in incompatibility, control of copy number, and sensitivity to acridine dye. Furthermore, three of the seven mini-F plasmids tested that carry Tn3 within the tandem repeat sequences of the incC region (previously isolated by other workers) exhibit all the phenotypes of pom plasmids, the ability to replicate in the mafA strain, and high copy number and acridine resistance in the mafA+ strain. The rest of the plasmids that contain Tn3 just outside the tandem repeats remain wild type in all these properties. These results strongly suggest that the putative mafA gene product of host bacteria controls mini-F replication through interaction with the incC region.  相似文献   

14.
A 4.0-kilobase (kb) fragment of Bacillus circulans genomic DNA inserted into pUC19 and encoding endoxylanase activity was subjected to a series of subclonings. A 1.0-kb HindIII-HincII subfragment was found to code for xylanase activity. Maximum expression levels were observed with a subclone that contained an additional 0.3-kb sequence upstream from the coding region. Enhancer sequences in the upstream region are thought to be responsible for these high expression levels. Southern hybridization analyses revealed that the cloned gene hybridized with genomic DNA from Bacillus subtilis and Bacillus polymyxa. Xylanase activity expressed by Escherichia coli harboring the cloned gene was located primarily in the intracellular fraction. Levels of up to 7 U/ml or 35 mg/liter were obtained. The protein product was purified by ion exchange and gel permeation chromatography. The xylanase had a molecular weight of 20,500 and an isoelectric point of 9.0.  相似文献   

15.
The Escherichia coli F plasmid gene required for amino-terminal acetylation of F-pilin subunits was identified. Using Western blots (immunoblots), we assayed the reaction of monoclonal antibodies with F-pilin polypeptides in inner membrane preparations from various F mutant strains. It was known that JEL92 recognizes an internal pilin epitope and JEL93 recognizes the acetylated amino-terminal sequence (L.S. Frost, J.S. Lee, D.G. Scraba, and W. Paranchych, J. Bacteriol. 168:192-198, 1986). As expected, neither antibody reacted with inner membranes from F- cells or Flac derivatives that do not synthesize pilin. Mutations that affected the individual activities of F tra genes traA, -B, -C, -D, -E, -F, -G, -H, -I, -J, -K, -L, -M, -N, -P, -R, -U, -V and -W or trb genes trbA, -B, -C, -D, -E, -G, -H, and -I did not prevent JEL92 or JEL93 recognition of membrane pilin. However, Hfr deletion mutants that lacked the most-distal transfer region genes did not express pilin that reacted with JEL93. Nevertheless, all strains that retained traA and traQ did express JEL92-reactive pilin polypeptides. Analysis of strains expressing cloned tra segments showed that traA and traQ suffice for synthesis of JEL92-reactive pilin, but synthesis of JEL93-reactive pilin is additionally dependent on traX. We concluded that the traX product is required for acetylation of F pilin. Interestingly, our data also showed that TraA+ TraQ+ cells synthesize two forms of pilin which migrate at approximately 7 and 8 kDa. In TraX+ cells, both become acetylated and react with JEL93. Preparations of wild-type F-pilus filaments contain both types of subunits.  相似文献   

16.
H Mori  A Iida  S Teshiba    T Fujio 《Journal of bacteriology》1995,177(17):4921-4926
We attempted to clone an inosine kinase gene of Escherichia coli. A mutant strain which grows slowly with inosine as the sole purine source was used as a host for cloning. A cloned 2.8-kbp DNA fragment can accelerate the growth of the mutant with inosine. The fragment was sequenced, and one protein of 434 amino acids long was found. This protein was overexpressed. The overexpressed protein was purified and characterized. The enzyme had both inosine and guanosine kinase activity. The Vmaxs for guanosine and inosine were 2.9 and 4.9 mumol/min/mg of protein, respectively. The Kms for guanosine and inosine were 6.1 microM and 2.1 mM, respectively. This enzyme accepted ATP and dATP as a phosphate donor but not p-nitrophenyl phosphate. These results show clearly that this enzyme is not a phosphotransferase but a guanosine kinase having low (Vmax/Km) activity with inosine. The sequence of the gene we have cloned is almost identical to that of the gsk gene (K.W. Harlow, P. Nygaard, and B. Hove-Jensen, J. Bacteriol. 177:2236-2240, 1995).  相似文献   

17.
The uncI gene, the first gene of the unc operon, has been cloned into an expression vector carrying the lambda PRPL promoters in tandem orientation and the gene cI857 coding for the thermolabile repressor. Linkage of the uncI gene to an efficient ribosome binding site (the translational initiation region of the uncE gene) resulted in 10-20-fold increased gene expression. The i protein has been extracted from overproducing cells using chloroform/methanol and purified to homogeneity by ion exchange chromatography. Analyzing the products of the uncI gene encoded by different plasmids, we provide evidence that, in contrast to the previously reported data (Walker, J. E., Saraste, M., and Gay, N. J. (1984) Biochim. Biophys. Acta 768, 164-200), the chromosome-encoded i protein contains the N-terminal sequence Ser-Val-Ser-Leu-Val-Ser-Arg and has a molecular weight of 13,504.  相似文献   

18.
The kinetics of cell division have been studied in a strain of Escherichia coli which has an amber mutation in the ftsA gene and which also carries a temperature sensitive amber suppressor. This strain is therefore temperature sensitive for the synthesis of the ftsA protein. Cells of this strain were able to divide only if the synthesis of this protein took place during a specific part of the cell cycle. This was a short period (roughly 10 min in duration) immediately before the normal time of cell division.  相似文献   

19.
Aspects of plasmid F maintenance in Escherichia coli   总被引:6,自引:0,他引:6  
A major class of replicons in procaryotes is typified by low copy number, nonrandom intracellular distribution, and stable inheritance. Included in this class are chromosomes of gram-positive and gram-negative bacteria as well as a number of plasmids from these organisms. Replicons in this major class have remarkable structural and functional similarities in the genes that effect and control replication. In the present work a review of plasmid F is presented as a paradigm for many aspects of this group's maintenance features.  相似文献   

20.
The TraJ protein encoded by the conjugative plasmid F has been designated an Escherichia coli K-12 envelope protein that participates in a mechanism of gene regulation. We have purified the TraJ protein, using an Flac::lambda traJ lysogen that overproduces the protein after heat induction of the prophage. Sufficient TraJ protein was synthesized within 40 min after induction to follow the purification by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Our purification exploited the observation that the TraJ protein remains insoluble after repeated Triton X-100/EDTA extractions of crude envelope fractions. The protein was then solubilized in sodium dodecyl sulfate at 60 degrees C and fractionated further by gel filtration and hydroxylapatite chromatography, both in the presence of sodium dodecyl sulfate. After hydroxylapatite chromatography, the protein was greater than 95% pure. The identity of the purified protein was confirmed by analysis of its NH2-terminal amino acid sequence, which was the same as that predicted from the partial nucleotide sequence of the traJ gene (Thompson, R., and Taylor, L. (1982) Mol. Gen. Genet. 188, 513-518). This analysis also indicated that the TraJ protein is localized in the cell without proteolytic modification of its NH2-terminus. We discuss the possible significance of these observations with respect to the cellular functions of the TraJ protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号