首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catabolism of caffeine (1,3,7-trimethylxanthine) in microorganisms commences via two possible mechanisms: demethylation and oxidation. Through the demethylation route, the major metabolite formed in fungi is theophylline (1,3-dimethylxanthine), whereas theobromine (3,7-dimethylxanthine) is the major metabolite in bacteria. In certain bacterial species, caffeine has also been oxidized directly to trimethyl uric acid in a single step. The conversion of caffeine to its metabolites is primarily brought about by N-demethylases (such as caffeine demethylase, theobromine demethylase and heteroxanthinedemethylase), caffeine oxidase and xanthine oxidase that are produced by several caffeine-degrading bacterial species such as Pseudomonas putida and species within the genera Alcaligenes, Rhodococcus and Klebsiella. Development of biodecaffeination techniques using these enzymes or using whole cells offers an attractive alternative to the present existing chemical and physical methods removal of caffeine, which are costly, toxic and non-specific to caffeine. This review mainly focuses on the biochemistry of microbial caffeine degradation, presenting recent advances and the potential biotechnological application of caffeine-degrading enzymes.  相似文献   

2.
Pseudomonas putida CBB5 was isolated from soil by enrichment on caffeine. This strain used not only caffeine, theobromine, paraxanthine, and 7-methylxanthine as sole carbon and nitrogen sources but also theophylline and 3-methylxanthine. Analyses of metabolites in spent media and resting cell suspensions confirmed that CBB5 initially N demethylated theophylline via a hitherto unreported pathway to 1- and 3-methylxanthines. NAD(P)H-dependent conversion of theophylline to 1- and 3-methylxanthines was also detected in the crude cell extracts of theophylline-grown CBB5. 1-Methylxanthine and 3-methylxanthine were subsequently N demethylated to xanthine. CBB5 also oxidized theophylline and 1- and 3-methylxanthines to 1,3-dimethyluric acid and 1- and 3-methyluric acids, respectively. However, these methyluric acids were not metabolized further. A broad-substrate-range xanthine-oxidizing enzyme was responsible for the formation of these methyluric acids. In contrast, CBB5 metabolized caffeine to theobromine (major metabolite) and paraxanthine (minor metabolite). These dimethylxanthines were further N demethylated to xanthine via 7-methylxanthine. Theobromine-, paraxanthine-, and 7-methylxanthine-grown cells also metabolized all of the methylxanthines mentioned above via the same pathway. Thus, the theophylline and caffeine N-demethylation pathways converged at xanthine via different methylxanthine intermediates. Xanthine was eventually oxidized to uric acid. Enzymes involved in theophylline and caffeine degradation were coexpressed when CBB5 was grown on theophylline or on caffeine or its metabolites. However, 3-methylxanthine-grown CBB5 cells did not metabolize caffeine, whereas theophylline was metabolized at much reduced levels to only methyluric acids. To our knowledge, this is the first report of theophylline N demethylation and coexpression of distinct pathways for caffeine and theophylline degradation in bacteria.Caffeine (1,3,7-trimethylxanthine) and related methylxanthines are widely distributed in many plant species. Caffeine is also a major human dietary ingredient that can be found in common beverages and food products, such as coffee, tea, and chocolates. In pharmaceuticals, caffeine is used generally as a cardiac, neurological, and respiratory stimulant, as well as a diuretic (3). Hence, caffeine and related methylxanthines enter soil and water easily through decomposed plant materials and other means, such as effluents from coffee- and tea-processing facilities. Therefore, it is not surprising that microorganisms capable of degrading caffeine have been isolated from various natural environments, with or without enrichment procedures (3, 10). Bacteria use oxidative and N-demethylating pathways for catabolism of caffeine. Oxidation of caffeine by a Rhodococcus sp.-Klebsiella sp. mixed-culture consortium at the C-8 position to form 1,3,7-trimethyluric acid (TMU) has been reported (8). An 85-kDa, flavin-containing caffeine oxidase was purified from this consortium (9). Also, Mohapatra et al. (12) purified a 65-kDa caffeine oxidase from Alcaligenes sp. strain CF8. Cells of a caffeine-degrading Pseudomonas putida strain (ATCC 700097) isolated from domestic wastewater (13) showed a fourfold increase in a cytochrome P450 absorption spectrum signal compared to cells grown on glucose. Recently, we reported a novel non-NAD(P)+-dependent heterotrimeric caffeine dehydrogenase from Pseudomonas sp. strain CBB1 (20). This enzyme oxidized caffeine to TMU stoichiometrically and hydrolytically, without producing hydrogen peroxide. Further metabolism of TMU has not been elucidated.Several caffeine-degrading bacteria metabolize caffeine via the N-demethylating pathway and produce theobromine (3,7-dimethylxanthine) or paraxanthine (1,7-dimethylxanthine) as the initial product. Theophylline (1,3-dimethylxanthine) has not been reported to be a metabolite in bacterial degradation of caffeine. Subsequent N demethylation of theobromine or paraxanthine to xanthine is via 7-methyxanthine. Xanthine is further oxidized to uric acid by xanthine dehydrogenase/oxidase (3, 10). Although the identities of metabolites and the sequence of metabolite formation for caffeine N demethylation are well established, there is very little information on the number and nature of N-demethylases involved in this pathway.The lack of adequate information on the metabolism and enzymology of theophylline, caffeine, and related methylxanthines prompted us to investigate the degradation of these compounds in detail. We isolated a unique caffeine-degrading bacterium, P. putida CBB5, from soil via enrichment with caffeine as the sole source of carbon and nitrogen. Here we describe a detailed study of the metabolism of theophylline, caffeine, and related di- and monomethylxanthines by CBB5. Our results indicate that CBB5 initially N demethylated caffeine to produce theobromine (major product) and paraxanthine (minor product) before the pathways converged to 7-methylxanthine and xanthine. Surprisingly, CBB5 was also capable of utilizing theophylline as a sole carbon and nitrogen source. CBB5 N demethylated theophylline to 1-methylxanthine and 3-methylxanthine, which were further N demethylated to xanthine. Theophylline N-demethylase activity was detected in cell extracts prepared from theophylline-grown CBB5 cells. 1-Methylxanthine and 3-methylxanthine were detected as products of this NAD(P)H-dependent reaction. To our knowledge, this is the first report of a theophylline degradation pathway in bacteria and coexpression of distinct caffeine and theophylline degradation pathways.  相似文献   

3.
A Pseudomonas species [Pseudomonas sp. strain amino alkanoate catabolism (AAC)] was identified that has the capacity to use 12‐aminododecanoic acid, the constituent building block of homo‐nylon‐12, as a sole nitrogen source. Growth of Pseudomonas sp. strain AAC could also be supported using a range of additional ω‐amino alkanoates. This metabolic function was shown to be most probably dependent upon one or more transaminases (TAs). Fourteen genes encoding putative TAs were identified from the genome of Pseudomonas sp. AAC. Each of the 14 genes was cloned, 11 of which were successfully expressed in Escherichia coli and tested for activity against 12‐aminododecanoic acid. In addition, physiological functions were proposed for 9 of the 14 TAs. Of the 14 proteins, activity was demonstrated in 9, and of note, 3 TAs were shown to be able to catalyse the transfer of the ω‐amine from 12‐aminododecanoic acid to pyruvate. Based on this study, three enzymes have been identified that are promising biocatalysts for the production of nylon and related polymers.  相似文献   

4.
Expression of genes involved in nikkomycin production in Streptomyces tendae was investigated by two-dimensional gel electrophoresis of cellular proteins. Ten gene products (P1–P10) were identified that were synthesized when nikkomycin was produced; these proteins were not detected in non-producing mutants. N-terminal sequences of six of the 10 proteins were obtained by microsequencing of protein spots excised from preparative two-dimensional gels. Protein P8 was identified as l -histidine amino-transferase (HisAT), which has been previously correlated with nikkomycin production. By using oligo-nucleotide probes deduced from the N-terminal sequences of protein P2 and P6, we isolated an 8 kb Bam HI fragment and a 6.5 kb Pvu II fragment, respectively, from the genome of Streptomyces tendae Tü901. Restriction analyses revealed that both fragments overlapped within a region of 1.5 kb. Mapping of the oligonucleotide probe hybridizing sites indicated that the genes encoding protein P2 and P6 are closely spaced on the 8 kb Bam HI fragment, and the latter is located on the overlapping region. DNA sequence analysis revealed that proteins P1 and P2 are encoded by a single gene, orfP1, that is translated at two initiation codons. The orfP1 gene was interrupted by homologous recombination using the integrating vector pWHM3. The gene-disrupted transformants did not produce nikkomycin, indicating that proteins P1 and P2 are essential for nikkomycin production. The data presented show that reverse genetics was successfully used to isolate genes Involved in nikkomycin production.  相似文献   

5.
6.
Pest and disease problems are important constraints of cassava production and host plant resistance is the most efficient method of combating them. Breeding for host plant resistance is considerably slowed down by the crop’s biological constraints of a long growth cycle, high levels of heterozygosity and a large genetic load. More efficient methods such as gene cloning and transgenesis are required to deploy resistance genes. To facilitate the cloning of resistance genes, bacterial artificial chromosome (BAC) library resources have been developed for cassava. Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly. The TMS30001 library has 55 296 clones with an insert size range of 40–150 kb with an average of 80 kb, while the MECU72 library consists of 92 160 clones and an insert size range of 25–250 kb average of 93 kb. Based on a genome size of 772 Mb, the TMS30001 and MECU72 libraries have a 5 and 11.3 haploid genome equivalents and a 95 and 99 chance of finding any sequence, respectively. To demonstrate the potential of the libraries, the TMS30001 library was screened by southern hybridization using a cassava analog (CBB1) of the Xa21 gene from rice that maps to a region containing a QTL for resistance to CBB as probe. Five BAC clones that hybridized to CBB1 were isolated and a Hind III fingerprint revealed 2–3 copies of the gene in individual BAC clones. A larger scale analysis of resistance gene analogs (RGAs) in cassava has also been conducted in order to understand the number and organization of RGAs. To scan for gene and repeat DNA content in the libraries, end-sequencing was performed on 2301 clones from the MECU72 library. A total of 1705 unique sequences were obtained with an average size of 715 bp. Database homology searches using BLAST revealed that 458 sequences had significant homology with known proteins and 321 with transposable elements. The use of the library in positional cloning of pest and disease resistance genes is discussed.  相似文献   

7.
A major quantitative trait loci (QTL) conditioning common bacterial blight (CBB) resistance in common bean (Phaseolus vulgaris L.) lines HR45 and HR67 was derived from XAN159, a resistant line obtained from an interspecific cross between common bean lines and the tepary bean (P. acutifolius L.) line PI319443. This source of CBB resistance is widely used in bean breeding. Several other CBB resistance QTL have been identified but none of them have been physically mapped. Four molecular markers tightly linked to this QTL have been identified suitable for marker assisted selection and physical mapping of the resistance gene. A bacterial artificial chromosome (BAC) library was constructed from high molecular weight DNA of HR45 and is composed of 33,024 clones. The size of individual BAC clone inserts ranges from 30 kb to 280 kb with an average size of 107 kb. The library is estimated to represent approximately sixfold genome coverage. The BAC library was screened as BAC pools using four PCR-based molecular markers. Two to seven BAC clones were identified by each marker. Two clones were found to have both markers PV-tttc001 and STS183. One preliminary contig was assembled based on DNA finger printing of those positive BAC clones. The minimum tiling path of the contig contains 6 BAC clones spanning an estimated size of 750 kb covering the QTL region.  相似文献   

8.
The genes encoding for six receptors involved in the proinflammatory response lie on different chromosomes. Two receptors for N-formylpeptides (FPR1, FPR2), one homologue of these (FPRL2), and the receptor for complement fragment C5a (C5aR) are encoded by four genes mapped to human chromosome 19. The genes encoding two receptors for Interleukin-8 (IL8RA, IL8RB) have been located on human chromosome 2. In this report we describe the physical linkage between these genes in two different clusters. DNA fragments obtained by digestion with several restriction enzymes were separated by pulsed field gel electrophoresis. Nylon filters were hybridized with probes corresponding to the complete translated sequences of these genes. These probes were obtained from a human neutrophil cDNA-library. The four genes on chromosome 19 are contained in a 200 kilobase (kb) fragment. Both Interleukin-8 receptors are on a 150 kb fragment. The complete translated sequences for these genes were amplified from genomic DNA, indicating that they are contained in a single exon.The contributions of the first two authors to this research was equal  相似文献   

9.
10.
Polymerase chain reaction (PCR) primers designed from a multiple alignment of predicted amino acid sequences from bacterial aroA genes were used to amplify a fragment of Lactococcus lactis DNA. An 8 kb fragment was then cloned from a lambda library and the DNA sequence of a 4.4 kb region determined. This region was found to contain the genes tyrA, aroA, aroK, and pheA, which are involved in aromatic amino acid biosynthesis and folate metabolism. TyrA has been shown to be secreted and AroK also has a signal sequence, suggesting that these proteins have a secondary function, possibly in the transport of amino acids. The aroA gene from L. lactis has been shown to complement an E. coli mutant strain deficient in this gene. The arrangement of genes involved in aromatic amino acid biosynthesis in L. lactis appears to differ from that in other organisms.The nucleotide sequence data reported in this paper have been submitted to the EMBL, GenBank, and DDBJ Nucleotide Sequence Databanks and have been assigned the accession number X78413  相似文献   

11.
Flowering and dwarfism induced by 5‐azacytidine and zebularine, which both cause DNA demethylation, were studied in a short‐day (SD) plant Pharbitis nil (synonym Ipomoea nil), var. Violet whose photoinduced flowering state does not last for a long period of time. The DNA demethylating reagents induced flowering under non‐inductive long‐day (LD) conditions. The flower‐inducing effect of 5‐azacytidine did not last for a long period of time, and the plants reverted to vegetative growth. The progeny of the plants that were induced to flower by DNA demethylation did not flower under the non‐inductive photoperiodic conditions. These results suggest that the flowering‐related genes were activated by DNA demethylation and then remethylated again in the progeny. The DNA demethylation also induced dwarfism. The dwarfism did not last for a long period of time, was not heritable and was overcome by gibberellin A3 but not by t‐zeatin or kinetin. The change in the genome‐wide methylation state was examined by methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. The analysis detected many more polymorphic fragments between the DNA samples isolated from the cotyledons treated with SD than from the cotyledons under LD conditions, indicating that the DNA methylation state was altered by photoperiodic conditions. Seven LD‐specific fragments were extracted from the gel of the MS‐AFLP and were sequenced. One of these fragments was highly homologous with the genes encoding ribosomal proteins.  相似文献   

12.
Summary Two genes coding for endoglucanase activity in Clostridium cellulolyticum were cloned and expressed in Escherichia coli by using plasmid pUC18. The sizes of two fragments harbouring endoglucanase genes are 4.4 kb and 2.0 kb, respectively. The 2.0-kb fragment was identical with a reported DNA fragment encoding an endoglucanase of C. cellulolyticum. The 4.4-kb fragment was obtained first in this study. Deletion analysis showed that a 1.3-kb portion of the 4.4-kb fragment is necessary for the endoglucanase expression by its own promoter. The 4.4-kb fragment hybridized with several different fragments of the genomic DNA in C. cellulolyticum.Offprint requests to: T. Kodama  相似文献   

13.
Analysis of the rnc locus of Coxiella burnetii   总被引:4,自引:0,他引:4  
A 3.2 kb EcoRI genomic DNA fragment of Coxiella burnetii was isolated by virtue of Its ability to suppress mucoidy in Eschertchia coli. Nucleotide sequence analysis revealed the presence of the genes homologous to rnc, era and recO of E. coli. Suppression of capsule synthesis, measured by β-galactosidase expression in Ion cps-lac fusion strains of E. coli, is caused by gene-dosage effects of the plasmid-borne rnc genes of either C. burnetii or E. coli. The rnc gene of C. burnetii complemented rn– E. coli hosts for lambda plaque morphology and stimulation of lambda N gene expression. We also demonstrated heterologous complementation of an E coli strain defective for the expression of Era, an essential protein in E. coli, using the plasmid-borne C. burnetii era. Under the control of the bacteriophage lambda PL promoter, this 3.2 kb EcoRI DNA fragment directed the synthesis in E. coli of three proteins with approximate molecular masses of 35,27 and 25 kDa. Antibodies against purified E. coli Era protein cross-reacted with the 35 kDa protein of C. burnetii on Western blots.  相似文献   

14.
Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners.  相似文献   

15.
Molecular cloning and characterization of the alkB gene of Escherichia coli   总被引:1,自引:0,他引:1  
Summary Using methods of in vitro recombination we constructed hybrid plasmids that can suppress the increased methylmethane sulfonate sensitivity caused by alkB mutation. Since the cloned DNA fragment was mapped at 47 min on the Escherichia coli K12 genetic map, an area where the alkB gene is located, we concluded that the cloned DNA fragment contains the alkB gene itself but not other genes that suppress alkB mutation. Specific labeling of plasmid-encoded proteins by the maxicell method revealed that the alkB codes for a polypeptide with a molecular weight of about 27,000. Introduction of a small deletion into the alkB region of the bacterial chromosome resulted in inactivation of both the alkB and ada genes, thereby suggesting that the two genes are adjacent on the E. coli chromosome.Abbreviations Ap ampicillin - Cm chloramphenicol - HPLC high performance liquid chromatography - kb kilobases - kd kilodaltons - MMS methylmethane sulfonate - MNU methylnitrosourea - MNNG N-methyl-N-nitro-N-nitrosoguanidine - Tc tetracycline - SDS sodium dodecyl sulfate  相似文献   

16.
17.
《Journal of molecular biology》2019,431(19):3647-3661
Caffeine, found in many foods, beverages, and pharmaceuticals, is the most used chemical compound for mental alertness. It is originally a natural product of plants and exists widely in environmental soil. Some bacteria, such as Pseudomonas putida CBB5, utilize caffeine as a sole carbon and nitrogen source by degrading it through sequential N-demethylation catalyzed by five enzymes (NdmA, NdmB, NdmC, NdmD, and NdmE). The environmentally friendly enzymatic reaction products, methylxanthines, are high-value biochemicals that are used in the pharmaceutical and cosmetic industries. However, the structures and biochemical properties of bacterial N-demethylases remain largely unknown. Here, we report the structures of NdmA and NdmB, the initial N1- and N3-specific demethylases, respectively. Reverse-oriented substrate bindings were observed in the substrate-complexed structures, offering methyl position specificity for proper N-demethylation. For efficient sequential degradation of caffeine, these enzymes form a unique heterocomplex with 3:3 stoichiometry, which was confirmed by enzymatic assays, fluorescent labeling, and small-angle x-ray scattering. The binary structure of NdmA with the ferredoxin domain of NdmD, which is the first structural information for the plant-type ferredoxin domain in a complex state, was also determined to better understand electron transport during N-demethylation. These findings broaden our understanding of the caffeine degradation mechanism by bacterial enzymes and will enable their use for industrial applications.  相似文献   

18.
The DNA fragments coding for ribosomal RNA inCampylobacter jejuni have been cloned from a genomic library ofC. jejuni constructed inEscherichia coli. Clones carrying DNA Sequences for rRNA were identified by hybridization of 5-end-labeled rRNA fromC. jejuni to colony blots of transformants from this gene library. Cloned DNA sequences homologous to each of 5S, 16S, and 23S rRNA were idenfified by hybridization of labeled plasmid DNA to Northern blots of rRNA. The gene coding for 23S rRNA was found to be located on a 5.5kb HindIII fragment, while the 5S and 16S rRNA genes were on HindIII fragments of 1.65 and 1.7 kb, respecitively. The DNA fragment containing the 16S rRNA gene was characterized by restriction endonuclease mapping, and the location of the 16S rRNA gene on this fragment was determined by hybridization of 5-end-labeled rRNA to restriction fragments and also by DNA sequence determination. It appears that the major portion of the coding region for 16S rRNA is located on the 1.7-kb HindIII fragment, while a small portion is carried on an adjacent HindIII fragment of 7.5 kb. Cloned rRNA genes fromC. jejuni were used to study the organization of the rDNA inC. jejuni and other members of the genùsCampylobacter.  相似文献   

19.
A triplex PCR method has been developed for the race‐specific detection of Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight (BB) pathogen of rice. For this, three primer sets were designed: for specific internal regions of two genes (hpaA and XorII very‐short‐patch‐repair endonuclease) and for a genomic locus derived from an amplified fragment length polymorphism (AFLP) fragment specific for the K3 and K5 races. The sizes of the PCR products when using XOOF/XOOR, XRMF/XRMR and XAF3F/XAF3R primer pairs were 327, 427 bp and 1 kb, respectively, when the assay was applied to detect the pathogen in solution and lesion exudates, and as a template. Amplicons were obtained without the need for any prior processing (e.g. DNA preparation from infected leaf or bacterial cell isolation from the lesion). Furthermore, the pathogen could be quickly detected in the asymptomatic rice leaf 3 days after inoculation and at a distance of 6 cm from the lesion site. This PCR‐based simple and rapid assay will be a useful method for the detection and identification of Xoo as well as for disease forecasting in paddy fields.  相似文献   

20.
Summary Gene conversion of large DNA heterologous fragments has been shown to take place efficiently in Saccharomyces cerevisiae. It has been found that a 2.6 kb LEU2 DNA fragment in a multicopy plasmid was replaced by a 3.1 kb PG11 chromosomal DNA fragment, when both fragments were flanked by homologous DNA regions. Gene conversion was asymmetric in a total of 481 recombinants analyzed. In contrast, truncated PG11 or LEU2 genes in multicopy plasmids, gave no recombinants that restored a complete plasmid copy of these genes in a total of 242 recombinants studied, confirming that a conversion tract is disrupted by a heterologous region. The asymmetry of the events detected suggest that gene conversion of large DNA heterologies involves a process whereby a gap first covers one heterologous fragment and then this is followed by new DNA synthesis using the other heterologous fragment as a template. Therefore, it is likely that large DNA heterologies are converted by a double-strand gap repair mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号