首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Increased oxidative damage is a prominent and early feature in Alzheimer disease. We previously crossed Alzheimer disease transgenic (APPsw) model mice with α-tocopherol transfer protein knock-out (Ttpa−/−) mice in which lipid peroxidation in the brain was significantly increased. The resulting double-mutant (Ttpa−/−APPsw) mice showed increased amyloid β (Aβ) deposits in the brain, which was ameliorated with α-tocopherol supplementation. To investigate the mechanism of the increased Aβ accumulation, we here studied generation, degradation, aggregation, and efflux of Aβ in the mice. The clearance of intracerebral-microinjected 125I-Aβ1–40 from brain was decreased in Ttpa−/− mice to be compared with wild-type mice, whereas the generation of Aβ was not increased in Ttpa−/−APPsw mice. The activity of an Aβ-degrading enzyme, neprilysin, did not decrease, but the expression level of insulin-degrading enzyme was markedly decreased in Ttpa−/− mouse brain. In contrast, Aβ aggregation was accelerated in Ttpa−/− mouse brains compared with wild-type brains, and well known molecules involved in Aβ transport from brain to blood, low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein, were up-regulated in the small vascular fraction of Ttpa−/− mouse brains. Moreover, the disappearance of intravenously administered 125I-Aβ1–40 was decreased in Ttpa−/− mice with reduced translocation of LRP-1 in the hepatocytes. These results suggest that lipid peroxidation due to depletion of α-tocopherol impairs Aβ clearances from the brain and from the blood, possibly causing increased Aβ accumulation in Ttpa−/−APPsw mouse brain and plasma.  相似文献   

2.
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH) and Eyring transition state entropies (ΔS). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.  相似文献   

3.
In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.  相似文献   

4.
The relative bioavailability of chlorothiazide from mucoadhesive polymeric compacts is compared to commercial oral suspension in pigs. A single-dose randomized study was conducted in 12 healthy pigs that are 9–10 weeks old. After overnight fasting, pigs were divided into two groups of six animals. To the first group, a reference product containing 50 mg of chlorothiazide suspension, and in the second group, test product (mucoadhesive compacts) chlorothiazide (50 mg) was administered with 75 mL of water via gastric tubes. Blood samples were collected between 0 to 24 h using catheters inserted into the jugular vein. Plasma was separated by protein precipitation, and chlorothiazide concentrations were determined using a high-performance liquid chromatography method. The mean Tmax and the Cmax of chlorothiazide following the administration of oral suspension and mucoadhesive compacts were 0.58 ± 0.20 h and 682.97 ± 415.69 ng/mL and 2.17 ± 0.98 h and 99.42 ± 124.08 ng/mL, respectively. The Kel and T1/2 of chlorothiazide were found to be 1.06 ± 0.28 h−1 and 0.70 ± 0.21 h from suspension and 0.95 ± 1.11 h−1 and 2.05 ± 1.90 h from the compacts, respectively. The Tmax of mucoadhesive compacts were significantly longer (p < 0.05; 2.17 h) than the reference products (0.58 h), whereas the Cmax of compacts were significantly lower (99 ng/mL) than the reference product (683 ng/mL; p < 0.05). The area under the curve (AUC) of compacts accounts only 50.15% (404.32 ± 449.93 ng h/mL) of the reference product’s AUC (806.27 ± 395.97 ng h/mL). The relative bioavailability of the compacts was lower than that of the suspension, and this may be due to the narrow window of absorption for chlorothiazide.Key words: bioavailability, chlorothiazide, mucoadhesive compacts, pigs  相似文献   

5.
There are few studies on the presence of extended-spectrum β-lactamases and AmpC β-lactamases (ESBL/AmpC) in bacteria that contaminate vegetables. The role of the production environment in ESBL/AmpC gene transmission is poorly understood. The occurrence of ESBL/AmpC in Escherichia coli (n = 46) from lettuce and irrigation water and the role of irrigation water in the transmission of resistant E. coli were studied. The presence of ESBL/AmpC, genetic similarity and phylogeny were typed using genotypic and phenotypic techniques. The frequency of β-lactamase gene transfer was studied in vitro. ESBLs/AmpC were detected in 35 isolates (76%). Fourteen isolates (30%) produced both ESBLs/AmpC. Prevalence was highest in E. coli from lettuce (90%). Twenty-two isolates (48%) were multi-resistant with between two and five ESBL/AmpC genes. The major ESBL determinant was the CTX-M type (34 isolates). DHA (33% of isolates) were the dominant AmpC β lactamases. There was a high conjugation efficiency among the isolates, ranging from 3.5 × 10−2 to 1 × 10−2 ± 1.4 × 10−1 transconjugants per recipient. Water isolates showed a significantly higher conjugation frequency than those from lettuce. A high degree of genetic relatedness between E. coli from irrigation water and lettuce indicated possible common ancestry and pathway of transmission.  相似文献   

6.
7.
This study aimed to identify the response of a salivary stress protein, extracellular heat shock protein (eHSP70), to intense exercise and to investigate the relationship between salivary eHSP70 and salivary immunoglobulin A (SIgA) levels in response to exercise. Sixteen healthy sedentary young males (means ± SD 23.8 ± 1.5 years, 172.2 ± 6.4 cm, 68.3 ± 7.4 kg) performed 59 min of cycling exercise at 75 % VO2max. Saliva and whole blood samples were collected before (Pre), immediately after (Post), and at 1, 2, 3, and 4 h after completion of the exercise (1, 2, 3, and 4 h). The salivary eHSP70 and SIgA levels were measured by enzyme-linked imunosorbent assay (ELISA), and the secretion rates were computed by multiplying the concentration by the saliva flow rate. White blood cells were analyzed using an automated cell counter with a direct-current detection system. The salivary eHSP70 secretion rates were 1.11 ± 0.86, 1.51 ± 1.47, 1.57 ± 1.32, 2.21 ± 2.04, 3.36 ± 2.72, and 6.89 ± 4.02 ng · min−1 at Pre, Post, and 1, 2, 3, and 4 h, respectively. The salivary eHSP70 secretion rate was significantly higher at 4 h than that at Pre, Post, 1, and 3 h (p < 0.05). The SIgA secretion rates were 26.9 ± 12.6, 20.3 ± 10.4, 19.6 ± 11.0, 21.8 ± 12.8, 21.5 ± 11.9, and 21.9 ± 11.7 μg · min−1 at Pre, Post, 1, 2, 3, and 4 h, respectively. The salivary SIgA secretion rate was significantly lower between 1 and 4 h than that at Pre (p < 0.05). There was a positive correlation between salivary eHSP70 and SIgA in both concentration and secretion rates before exercise (p < 0.05). The absolute number of white blood cells significantly increased after exercise, with a maximum at 2 h (p < 0.05). The neutrophil/lymphocyte ratio was significantly increased from 1 to 4 h when compared with that in the Pre samples (p < 0.05). The present study revealed that salivary eHSP70 significantly increased at 4 h after the 59 min of intense exercise in sedentary male subjects. Exercise stress can induce elevated salivary eHSP70 level and upregulate oral immune function partially.  相似文献   

8.
This study sought to evaluate the effects of a single session of exercise on the expression of Hsp70, of c-jun N-terminal kinase (JNK), and insulin receptor substrate 1 serine 612 (IRSser612) phosphorylation in the skeletal muscle of obese and obese insulin-resistant patients. Twenty-seven volunteers were divided into three experimental groups (eutrophic insulin-sensitive, obese insulin-sensitive, and obese insulin-resistant) according to their body mass index and the presence of insulin resistance. The volunteers performed 60 min of aerobic exercise on a cycle ergometer at 60 % of peak oxygen consumption. M. vastus lateralis samples were obtained before and after exercise. The protein expressions were evaluated by Western blot. Our findings show that compared with paired eutrophic controls, obese subjects have higher basal levels of p-JNK (100 ± 23 % vs. 227 ± 67 %, p = 0.03) and p-IRS-1ser612 (100 ± 23 % vs. 340 ± 67 %, p < 0.001) and reduced HSP70 (100 ± 16 % vs. 63 ± 12 %, p < 0.001). The presence of insulin resistance results in a further increase in p-JNK (460 ± 107 %, p < 0.001) and a decrease in Hsp70 (46 ± 5 %, p = 0.006), but p-IRS-1ser612 levels did not differ from obese subjects (312 ± 73 %, p > 0.05). Exercise reduced p-JNK in obese insulin-resistant subjects (328 ± 33 %, p = 0.001), but not in controls or obese subjects. Furthermore, exercise reduced p-IRS-1ser612 for both obese (122 ± 44 %) and obese insulin-resistant (185 ± 36 %) subjects. A main effect of exercise was observed in HSP70 (p = 0.007). We demonstrated that a single session of exercise promotes changes that characterize a reduction in cellular stress that may contribute to exercise-induced increase in insulin sensitivity.  相似文献   

9.
In this study, liquid crystalline nanoparticles (LCN) have been proposed as new carrier for topical delivery of finasteride (FNS) in the treatment of androgenetic alopecia. To evaluate the potential of this nanocarrier, FNS-loaded LCN was prepared by ultrasonication method and characterized for size, shape, in vitro release, and skin permeation–retention properties. The particle size ranged from 153.8 to 170.2 nm with a cubical shape and exhibited controlled release profile with less than 20% of the drug released in the first 24 h. The release profile was significantly altered with addition of different additives. Formulation with lower monoolein exhibited higher skin permeation with a flux rate of 0.061 ± 0.005 μg cm−2 h−1 in 24 h. The permeation however, significantly increased with glycerol, propylene glycol, and polyethylene glycol 400, while it declined for the addition of oleic acid. A similar trend was observed with skin retention study. In conclusion, FNS-loaded LCN could be advocated as a viable alternative for oral administration of the drug.Key words: androgenetic alopecia, finasteride, liquid crystalline nanoparticles, release, skin permeation–retention  相似文献   

10.
The photolysis of riboflavin (RF) in the presence of acetate buffer (pH 3.8–5.6) and carbonate buffer (pH 9.2–10.8) has been studied using a multicomponent spectrophotometric method for the simultaneous assay of RF and its photoproducts. Acetate and carbonate buffers have been found to catalyze the photolysis reaction of RF. The apparent first-order rate constants for the acetate-catalyzed reaction range from 0.20 to 2.86 × 10−4 s−1 and for the carbonate-catalyzed reaction from 3.33 to 15.89 × 10−4 s−1. The second-order rate constants for the interaction of RF with the acetate and the carbonate ions range from 2.04 to 4.33 × 10−4 M−1 s−1 and from 3.71 to 11.80 × 10−4 M−1 s−1, respectively. The k-pH profile for the acetate-catalyzed reaction is bell shaped and for the carbonate-catalyzed reaction a steep curve. Both HCO3 and CO32 − ions are involved in the catalysis of the photolysis reaction in alkaline solution. The rate constants for the HCO3 and CO32 − ions catalyzed reactions are 0.72 and 1.38 × 10−3 M−1 s−1, respectively, indicating a major role of CO32 − ions in the catalysis reaction. The loss of RF fluorescence in acetate buffer suggests an interaction between RF and acetate ions to promote the photolysis reaction. The optimum stability of RF solutions is observed in the pH range 5–6, which is suitable for pharmaceutical preparations.KEY WORDS: acetate effect, carbonate effect, photolysis, riboflavin, spectrophotometric assay  相似文献   

11.
Evolutionary conservation of substructure architecture between yeast iso-1-cytochrome c and the well-characterized horse cytochrome c is studied with limited proteolysis, the alkaline conformational transition and global unfolding with guanidine-HCl. Mass spectral analysis of limited proteolysis cleavage products for iso-1-cytochrome c show that its least stable substructure is the same as horse cytochrome c. The limited proteolysis data yield a free energy of 3.8 ± 0.4 kcal mol−1 to unfold the least stable substructure compared with 5.05 ± 0.30 kcal mol−1 for global unfolding of iso-1-cytochrome c. Thus, substructure stabilities of iso-1-cytochrome c span only ∼1.2 kcal mol−1 compared with ∼8 kcal mol−1 for horse cytochrome c. Consistent with the less cooperative folding thus expected for the horse protein, the guanidine-HCl m-values are ∼3 kcal mol−1M−1 versus ∼4.5 kcal mol−1M−1 for horse versus yeast cytochrome c. The tight free energy spacing of the yeast cytochrome c substructures suggests that its folding has more branch points than for horse cytochrome c. Studies on a variant of iso-1-cytochrome c with an H26N mutation indicate that the least and most stable substructures unfold sequentially and the two least stable substructures unfold independently as for horse cytochrome c. Thus, important aspects of the substructure architecture of horse cytochrome c, albeit compressed energetically, are preserved evolutionally in yeast iso-1-cytochrome c.  相似文献   

12.
The concentration profiles and the absorbed fraction (F) of the País grape seed extract in the human small intestine were obtained using a microscopic model simulation that accounts for the extracts'' dissolution and absorption. To apply this model, the physical and chemical parameters of the grape seed extract solubility (Cs), density (ρ), global mass transfer coefficient between the intestinal and blood content (k) (effective permeability), and diffusion coefficient (D) were experimentally evaluated. The diffusion coefficient (D = 3.45 × 10−6 ± 5 × 10−8 cm2/s) was approximately on the same order of magnitude as the coefficients of the relevant constituents. These results were chemically validated to discover that only the compounds with low molecular weights diffused across the membrane (mainly the (+)-catechin and (−)-epicatechin compounds). The model demonstrated that for the País grape seed extract, the dissolution process would proceed at a faster rate than the convective process. In addition, the absorbed fraction was elevated (F = 85.3%). The global mass transfer coefficient (k = 1.53 × 10−4 ± 5 × 10−6 cm/s) was a critical parameter in the absorption process, and minor changes drastically modified the prediction of the extract absorption. The simulation and experimental results show that the grape seed extract possesses the qualities of a potential phytodrug.KEY WORDS: dose absorption, mathematical modeling, País grape seed extract, simulation  相似文献   

13.
This study examined the relationship between exhaustive exercise in the heat at moderate and high intensities on the intracellular heat shock protein 72 (iHsp72) response. Twelve male subjects cycled to exhaustion at 60 and 75 % of maximal oxygen uptake in hot conditions (40 °C, 50 % RH). iHsp72 concentration was measured in monocytes before, at exhaustion and 24 h after exercise. Rectal temperature, heart rate and oxygen uptake were recorded during exercise. Volitional exhaustion occurred at 58.9 ± 12.1 and 27.3 ± 9.5 min (P < 0.001) and a rectal temperature of 39.8 ± 0.4 and 39.2 ± 0.6 °C (P = 0.002), respectively, for 60 and 75 %. The area under the curve above a rectal temperature of 38.5 °C was greater at 60 % (17.5 ± 6.6 °C min) than 75 % (3.4 ± 4.8 °C min; P < 0.001), whereas the rate of increase in rectal temperature was greater at 75 % (5.1 ± 1.7 vs. 2.2 ± 1.4 °C h−1; P < 0.001). iHsp72 concentration increased similarly at exhaustion relative to pre-exercise (P = 0.044) and then increased further at 24 h (P < 0.001). Multiple regression analysis revealed no predictor variables associated with iHsp72 expression; however, a correlation was observed between exercise intensities for the increase in iHsp expression at exhaustion and 24 h (P < 0.05). These results suggest that iHsp72 expression increased in relation to the level of hyperthermia attained and sustained at 60 % and the higher metabolic rate and greater rate of increase in core temperature at 75 %, with the further increase in iHsp72 concentration 24 h after exercise reinforcing its role as a chaperone and cytoprotective agent.  相似文献   

14.
Ephedra foliata Boiss. & Kotschy ex Boiss., (family – Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l−1 of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR’s) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l−1 ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l−1), Kinetin (Kin; 0.25 mg l−1), Indole-3-acetic acid (IAA; 0.1 mg l−1) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l−1 of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.  相似文献   

15.
Peroxiredoxins, a group of antioxidant protein enzymes (PRDX1 to 6), are reported as antiatherogenic factors in animals; however, human studies are lacking. The present work aims to provide baseline data regarding the phenotype of PRDX1, 2, 4, and 6 in diabetic patients with peripheral atherosclerosis disease (PAD) and their relation to endothelial dysfunction (ED) and disease severity. Plasma levels of PRDX1, 2, 4, and 6 and markers of endothelial dysfunction (ICAM-1 and VCAM-1) were measured using ELISA in 55 type 2 diabetic patients having PAD and 25 healthy subjects. Ankle–brachial index (ABI), body mass index (BMI), triglycerides (TG), total cholesterol, HbA1c, and insulin resistance (HOMA IR) were measured. PRDX1, 2, 4, and 6 levels were significantly higher in patients compared to controls (PRDX1 21.9 ± 5.71 vs 16.8 ± 3.9 ng/ml, P < 0.001, PRDX2 36.5 ± 14.83 vs 20.4 ± 8.61 ng/ml, P < 0.001, PRDX4 3,840 ± 1,440 vs 2,696 ± 1,972 pg/ml, P < 0.005, PRDX6 311 ± 110 vs 287.9 ± 114 pg/ml, P < 0.05). PRDX1 and PRDX4 correlated negatively with ABI (r = −0.273, P < 0.05 and r = −0.28, P < 0.05, respectively), while PRDX1 and PRDX2 correlated positively with HOMA/IR and TG (r = 0.276, P < 0.01 and r = 0.295, P < 0.01, respectively). ICAM-1 was associated with PRDX2 and log PRDX6 (r = 0.345, P = 0.0037 and r = 0.344, P = 0.0038). Our results provide strong links among PRDXs, ED, and severity of PAD in diabetic patients which warrants further evaluation to clarify whether high circulating levels of PRDXs are a consequence of chronic atherosclerotic disease or a predisposing factor for later cardiovascular events.  相似文献   

16.
The degradation kinetics of 5 × 10−5 M cyanocobalamin (B12) and hydroxocobalamin (B12b) in the presence of ascorbic acid (AH2) was studied in the pH range of 1.0–8.0. B12 is degraded to B12b which undergoes oxidation to corrin ring cleavage products. B12b alone is directly oxidized to the ring cleavage products. B12 and B12b in degraded solutions were simultaneously assayed by a two-component spectrometric method at 525 and 550 nm without interference from AH2. Both degrade by first-order kinetics and the values of the rate constants at pH 1.0–8.0 range from 0.08 to 1.05 × 10−5 s−1 and 0.22–7.62 × 10−5 s−1, respectively, in the presence of 0.25 × 10−3 M AH2. The t1/2 values of B12 and B12b range from 13.7 to 137.5 h and 2.5–87.5 h, respectively. The second-order rate constants for the interaction of AH2 with B12 and B12b are 0.05–0.28 × 10−2 and 1.10–30.08 × 10−2 M−1 s−1, respectively, indicating a greater effect of AH2 on B12b compared to that of B12. The kobs–pH profiles for both B12 and B12b show the highest rates of degradation around pH 5. The degradation of B12 and B12b by AH2 is affected by the catalytic effect of phosphate ions on the oxidation of AH2 in the pH range 6.0–8.0.KEY WORDS: ascorbic acid, cyanocobalamin, degradation, hydroxocobalamin, kinetics, two-component spectrometry  相似文献   

17.
We determined whether there is an association between complement factor H (CFH), high-temperature requirement A-1 (HTRA1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor (PEDF) genotypes and the response to treatment with a single intravitreous injection of bevacizumab for age-related macular degeneration (AMD). Eighty-three patients with exudative AMD treated by bevacizumab injection were genotyped for three single nucleotide polymorphisms (SNPs; rs800292, rs1061170, rs1410996) in the CFH gene, a rs11200638-SNP in the HTRA1 gene, three SNPs (rs699947, rs1570360, rs2010963) in the VEGF gene, and four SNPs (rs12150053, rs12948385, rs9913583, rs1136287) in the PEDF gene using a TaqMan assay. The CT genotype (heterozygous) of CFH-rs1061170 was more frequently represented in nonresponders in vision than TT genotypes (nonrisk allele homozygous) at the time points of 1 and 3 months, while there was no CC genotype (risk allele homozygous) in our study cohort (p = 7.66 × 10−3, 7.83 × 10−3, respectively). VEGF-rs699947 was also associated with vision changes at 1 month and PEDF-rs1136287 at 3 months (p = 5.11 × 10−3, 2.05 × 10−2, respectively). These variants may be utilized for genetic biomarkers to estimate visual outcomes in the response to intravitreal bevacizumab treatment for AMD.  相似文献   

18.
Extracellular glucoamylase of Colletotrichum sp. KCP1 produced through solid state fermentation was purified by two steps purification process comprising ammonium sulphate precipitation followed by gel permeation chromatography (GPC). The Recovery of glucoamylase after GPC was 50.40 % with 19.3-fold increase in specific activity. The molecular weight of enzyme was found to be 162.18 kDa by native-PAGE and was dimeric protein of two sub-units with molecular weight of 94.62 and 67.60 kDa as determined by SDS-PAGE. Activation energy for starch hydrolysis was 26.45 kJ mol−1 while temperature quotient (Q10) was found to be 1.9. The enzyme was found to be stable over wide pH range and thermally stable at 40–50 °C up to 120 min while exhibited maximum activity at 50 °C with pH 5.0. The pKa1 and pKa2 of ionisable groups of active site controlling Vmax were 3.5 and 6.8, respectively. Vmax, Km and Kcat for starch hydrolysis were found to be 58.82 U ml−1, 1.17 mg (starch) ml−1 and 449 s−1, respectively. Activation energy for irreversible inactivation (Ea(d)) of glucoamylase was 74.85 kJ mol−1. Thermodynamic parameters of irreversible inactivation of glucoamylase and starch hydrolysis were also determined.  相似文献   

19.
In order to improve the bioavailability of the antidepressant drug, venlafaxine hydrochloride, in situ mucoadhesive thermoreversible gel, was formulated using Lutrol F127 (18%) as a thermo gelling polymer. Mucoadhesion was modulated by trying carbopol 934, PVP K30, HPMC K4M, sodium alginate, tamarind seed gum, and carrageenan as mucoadhesive polymers. Results revealed that as the concentration of mucoadhesive polymer increased the mucoadhesive strength increased but gelation temperature decreased. Formulation was optimized on the basis of clarity, pH, gelation temperature, mucoadhesive strength, gel strength, viscosity, drug content, diffusion through sheep nasal mucosa, histopathological evaluation of mucosa, and pharmacodynamic study in rats. Final formulation T5 containing 18% Lutrol F127 and 0.3% PVP K30 was considered as an optimized formulation. T5 released 97.86 ± 0.073% drug in 150 min with a flux of 0.1545 mg cm−2 min−1 and gelation temperature 31.17 ± 0.30°C. Histopathological evaluation of nasal mucosa revealed that T5 formulation was safe for nasal administration as it caused no damage to nasal epithelium. From the results of pharmacodynamic study, mainly forced swim test (FST), it was concluded that venlafaxine hydrochloride was more effective as an antidepressant by nasal route as in situ gel nasal drops in comparison to oral administration of equivalent dose.Key words: lutrol F127, mucoadhesive, nasal in situ gel, thermoreversible, venlafaxine HCl  相似文献   

20.
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号