首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil microbiome comprises numerous microbial species that continuously interact with each other. Among the modes of diverse interactions, cell–cell killing may play a key role in shaping the microbiome composition. Bacteria deploy various secretion systems to fend off other microorganisms and Type IV Secretion System (T4SS) in pathogenic bacteria was shown to function as a contact-dependent, inter-bacterial killing system only recently. The present study investigated the role played by T4SS in the killing behaviour of the soilborne biocontrol bacterium Lysobacter enzymogenes OH11. Results showed that L. enzymogenes OH11 genome encompasses genes encoding all the components of T4SS and effectors potentially involved in inter-bacterial killing system. Generation of knock-out mutants revealed that L. enzymogenes OH11 uses T4SS as the main contact-dependent weapon against other soilborne bacteria. The T4SS-mediated killing behaviour of L. enzymogenes OH11 decreased the antibacterial and antifungal activity of two Pseudomonas spp. but at the same time, protected carrot from infection by Pectobacterium carotovorum. Overall, this study showed for the first time the involvement of T4SS in the killing behaviour of L. enzymogenes and its impact on the multiple interactions occurring in the soil microbiome.  相似文献   

2.
Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, β-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and β-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.  相似文献   

3.
4.
李志远  韩胜男  王进  赵丹  韩超  刘爱新 《微生物学报》2022,62(11):4529-4540
辣椒溶杆菌(Lysobacter capsici) X2-3是从小麦根际分离的一株对多种病原真菌和卵菌有抑菌活性的菌株,目前对该菌株产生的抗菌物质及其产生调控机制尚不明确。【目的】明确转录因子LC_Clp对该菌株抗菌物质产生的调节作用,为深入了解L. capsici X2-3的生防机制提供依据。【方法】从转座子EZ-Tn5随机插入突变体库中筛选获得X2-3的LC_clp基因突变体M356,通过恢复性克隆获得功能互补菌株,分析LC_clp基因在拮抗活性、胞外酶分泌以及调控基因表达方面的差异。【结果】与X2-3相比,M356对测试病原真菌、卵菌的抑菌活性和产生体外抗菌物质的能力完全丧失,蛋白酶和纤维素酶产生量明显减少,几乎不产几丁质酶;所检测的转录调节因子、次生代谢及胞外酶等相关基因的表达量均显著低于野生株X2-3,而互补菌株MCS28和X2-3水平相当。【结论】LC_Clp不仅与菌株的抗菌物质合成及抑菌活性有关,还影响胞外酶的产生,并调控多种基因的表达,具有广泛的调节作用。  相似文献   

5.
Mechanisms of biocontrol of soil-borne plant pathogens by Rhizobacteria   总被引:3,自引:0,他引:3  
Bacterial antagonism, responsible for biological control, may operate by antiobiosis, competition or parasitism. Parasitism relies on lytic enzymes for the degradation of cell walls of pathogenic fungi. Serratia marcescens was found to be an efficient biocontrol agent of Sclerotium rolfsii and Rhizoctonia solani under greenhouse conditions. Populations of 105 or 106 colony forming units g-1 soil were the most effective. Drench and drip application of S. marcescens suspension were more effective in controlling S. rolfsii than spraying, mixing in soil or seed coating. The highest population density of the bacteria in the rhizosphere was found on the proximal portion of the root, decreasing significantly until the tips, where it increased again. The isolated Serratia, found to possess chitinolytic activity, was able to release N-acetyl D-glucosamine from cell walls of S. rolfsii. The gene coding for chitinase was cloned into Escherichia coli and the enzyme was uniquely excreted from the bacterium into its growth medium. When S. rolfsii was sprayed by partially purified chitinase produced by the cloned gene, rapid and extensive bursting of the hyphal tips was observed. This chitinase preparation was effective in reducing disease incidence caused by S. rolfsii in beans and R. solani in cotton, under greenhouse conditions. A similar effect was obtained when a viable E. coli cell, containing the plasmid with the chitinase gene (pLCHIA), was applied. It appears that genetic engineering of the lytic enzymes, such as chitinase which play an important role in plant disease control, may improve the efficacy of biocontrol agents.  相似文献   

6.
7.
Here, three different suicide vectors were evaluated for the possibility of performing gene mutagenesis in strain OH11 using the chiA gene (accession number: DQ888611) as a new reporter. Suicide vector pEX18GM was selected, and it was successfully applied for disruption and in-frame deletions in the chiA gene in strain OH11, which was confirmed by PCR amplification and Southern hybridization. The chiA-deletion mutant OH11-3 did not have the ability to produce chitinase on chitine selection medium. Interestingly, the chiA-deletion mutants displayed wild-type antimicrobial activity against Saccharomyces cerevisiae, Magnaporthe grisea, Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium ultimum. Our data suggest that chitinase might not be a unique lytic enzyme in controlling S. cerevisiae, M. grisea, P. capsici, and P. ultimum. R. solani, S. sclerotiorum. Also, suicide vector pEX18GM might be explored as a potential tool for gene deletions in L. enzymogenes, which will facilitate the molecular study of mechanisms of biological control in L. enzymogenes.  相似文献   

8.
9.
10.
The use of specific mycolytic soil microorganisms to control plant pathogens is an ecological approach to overcome the problems caused by standard chemical methods of plant protection. The ability to produce lytic enzymes is a widely distributed property of rhizosphere-competent fungi and bacteria. Due to the higher activity of Trichoderma spp. lytic enzymes as compared to the same class of enzymes from other microorganisms and plants, effort is being aimed at improving biocontrol agents and plants by introducing Trichoderma genes via genetic manipulations. An overview is presented of the data currently available on lytic enzymes from the mycoparasitic fungus Trichoderma. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Two wild-type strains and three benomyl-resistant mutants of the antagonistic ascomycete Talaromyces flavus were crossed in six combinations, two of which yielded hybrid cleistothecia. Parental strains and their ascospore progenies varied in several traits considered to play an important role in the capacity to control soilborne fungal pathogens: extracellular activities of glucose oxidase and cell-wall degrading enzymes, antibiosis towards Verticillium dahliae, and parasitism and biocontrol of Sclerotium rolfsii. A non-Mendelian quantitative mode of inheritance was found for β-1, 3-glucanase and chitinase activities but only the latter exhibited a normal frequency distribution. Some of the progenies exhibited higher glucanase and chitinase activities than those found in the parental strains. Progeny analysis for chitinase, glucanase, cellulase, and glucose oxidase activities revealed no genetic association between any two of these enzymes. Antibiosis was correlated with glucose-oxidase activity in one cross, but not in the other. The ability to reduce bean root rot caused by S. rolfsii was correlated with mycoparasitic activity against S. rolfsii sclerotia in one cross, but not in the other. One out of the 20 progenies tested was able to reduce bean root rot more effectively than its parent strains, thus demonstrating the feasibility of improving a biocontrol agent by conventional breeding.  相似文献   

12.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

13.
Biological control is being considered as an alternative or a supplemental way of reducing the use of chemicals in agriculture. An endophytic strain G3 with potential as a biocontrol agent was isolated from the stems of Triticum aestivum L. It was classified by 16S rDNA sequencing as a member of Serratia. Strain G3 displayed a broad spectrum of antifungal activity in vitro against a number of phytopathogens such as Botrytis cinerea, Cryphonectria parasitica, Rhizoctonia cerealis and Valsa sordida. Molecular mechanisms involved in biocontrol by Serratia sp. G3 was investigated for its potential application to plant health management. The results showed that G3 produces an array of antimicrobial exoproducts, including chitinase, protease, antibiotic pyrrolnitrin, and siderophores for iron competition. Moreover, it also produced the plant growth hormone indole-3-acetic acid, suggesting that multiple mechanisms and their synergistic effects may be involved in biocontrol of plant diseases. Additionally, strain G3 can produce at least ten N-acyl homoserine lactones (AHLs) signal molecules for cell to cell communication, including unsubstituted, 3-oxo, and 3-hydroxy at the C3 position through liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is different from the previously reported Serraia species. For the first time, N-3-oxo-heptanoyl-homoserine lactone, one of the main molecules was reported in the genus Serratia. The role of AHL-dependent quorum sensing system in the interactions between the endophytic strain G3 and host plants and its potential application in improving biocontrol efficacy will be further explored.  相似文献   

14.
Aims: To develop a strain‐specific TaqMan® PCR method for detecting and quantifying the biocontrol strain Lysobacter enzymogenes 3.1T8. Methods and Results: A primer–probe combination was designed on the basis of a strain‐specific sequence selected using REP‐PCR (repetitive extragenic palindromic‐polymerase chain reaction). The specificity of this combination was demonstrated by 14 other Lysobacter strains that did not react with the selected primer–probe combination. To quantify strain 3.1T8 in cucumber root samples, a calibration curve was prepared by spiking roots with a 10‐fold dilution series of the strain. Detection of the biocontrol strain 3.1T8 with this method showed that the strain survived well for 22 days on root tips as well as on older cucumber roots. Survival was higher when the strain was inoculated to younger plants. In a cucumber production system with large volumes of substrate, strain 3.1T8 was detected in high numbers on cucumber roots 3 weeks after inoculation. Conclusions: The primer–probe combination developed was strain specific, because it did not react with other strains of the same species and genus. The TaqMan® PCR method successfully quantified the inoculated biocontrol strain on cucumber roots grown in different cropping systems. Significance and Impact of the Study: The developed TaqMan® PCR method is a strain‐specific real‐time detection method that can be used to assess the population dynamics of L. enzymogenes strain 3.1T8 for further optimization of its biocontrol efficacy.  相似文献   

15.
An actively antagonistic bacterium that could be used as a biocontrol agent against Fusarium solani, which causes root rots with considerable losses in many important crops, was isolated from a ginseng rhizosphere and identified as a strain of Pseudomonas stutzeri. In several biochemical tests with culture filtrates of P. stutzeri YPL-1 and in mutational analyses of antifungal activities of reinforced or defective mutants, we found that the anti-F. solani mechanism of the bacterium may involve a lytic enzyme rather than a toxic substance or antibiotic. P. stutzeri YPL-1 produced extracellular chitinase and laminarinase when grown on different polymers such as chitin, laminarin, or F. solani mycelium. These lytic extracellular enzymes markedly inhibited mycelial growth rather than spore germination and also caused lysis of F. solani mycelia and germ tubes. Scanning electron microscopy revealed degradation of the F. solani mycelium. Abnormal hyphal swelling and retreating were caused by the lysing agents from P. stutzeri YPL-1, and a penetration hole was formed on the hyphae in the region of interaction with the bacterium; the walls of this region were rapidly lysed, causing leakage of protoplasm. Genetically bred P. stutzeri YPL-1 was obtained by transformation of the bacterium with a broad-host-range vector, pKT230. Also, the best conditions for the transformation were investigated.  相似文献   

16.
17.
Novel strains of rhizobacteria, Pseudomonas fluorescens Pf 9A‐14, Pseudomonas sp. Psp. 8D‐45 and Bacillus subtilis Bs 8B‐1, showed broad‐spectrum antagonistic activity and provided suppression of Pythium damping‐off and root rot of cucumber. Their biocontrol potential was further investigated for suppression of additional seedling diseases of cucumber (Phytophthora capsici) and radish (Rhizoctonia solani). Bacterial strains were also characterised for production of antibiotics, metabolites, volatiles, phytohormones and lytic enzymes. Seed and pre‐plant applications of all three antagonistic bacteria as cell suspension and talc or irradiated peat formulations to the infested potting mix provided overall high level of suppression of Phytophthora damping‐off and root rot of cucumber (66–85% healthy seedlings) and relatively low level of suppression of Rhizoctonia damping‐off of radish (18–38% healthy seedlings). Bacterial treatments also resulted in higher plant fresh masses. Seed coating with irradiated peat formulation of a mixture of three bacteria resulted in superior control of Phytophthora damping‐off and root rot of cucumber and much higher plant fresh masses. The presence of genes for biosynthesis of phenazine‐1‐carboxylic acid, 2,4‐diacetylphloroglucinol, pyrrolnitrin and pyoluteorin was confirmed in Pseudomonas strains, and that of fengycin, bacillomycin, bacilysin, surfactin and iturin A in B. subtilis Bs 8B‐1. All three strains produced HCN, salicylic acid, indole‐3‐acetic acid, protease and β‐1,3‐glucanase. Both Pseudomonas strains produced siderophores and only P. fluorescens Pf 9A‐14 showed phosphate solubilisation and chitinase activity. All three strains inhibited pathogen growth by producing volatiles, and gas chromatography–mass spectrometry analysis revealed eight compounds in Pf 9A‐14, 10 in Bs 8B‐1 and 4 in Psp 8D‐45, some with known antifungal activity. The antagonistic and plant‐growth promotion activities of these strains might be due to production of antibiotics, metabolites, lytic enzymes or phytohormones.  相似文献   

18.
Abstract

Biological control of phytopathogenic fungi and insects continues to inspire the research and development of environmentally friendly bioactive alternatives. Potentially lytic enzymes, chitinases can act as a biocontrol agent against agriculturally important fungi and insects. The cell wall in fungi and protective covers, i.e. cuticle in insects shares a key structural polymer, chitin, a β-1,4-linked N-acetylglucosamine polymer. Therefore, it is advantageous to develop a common biocontrol agent against both of these groups. As chitin is absent in plants and mammals, targeting its metabolism will signify an eco-friendly strategy for the control of agriculturally important fungi and insects but is innocuous to mammals, plants, beneficial insects and other organisms. In addition, development of chitinase transgenic plant varieties probably holds the most promising method for augmenting agricultural crop protection and productivity, when properly integrated into traditional systems. Recently, human proteins with chitinase activity and chitinase-like proteins were identified and established as biomarkers for human diseases. This review covers the recent advances of chitinases as a biocontrol agent and its various applications including preparation of medically important chitooligosaccharides, bioconversion of chitin as well as in implementing chitinases as diagnostic and prognostic markers for numerous diseases and the prospect of their future utilization.  相似文献   

19.
Two extracellular chitinases were purified from Paecilomyces variotii DG-3, a chitinase producer and a nematode egg-parasitic fungus, to homogeneity by DEAE Sephadex A-50 and Sephadex G-100 chromatography. The purified enzymes were a monomer with an apparent molecular mass of 32 kDa (Chi32) and 46 kDa (Chi46), respectively, and showed chitinase activity bands with 0.01% glycol chitin as a substrate after SDS-PAGE. The first 20 and 15 N-terminal amino acid sequences of Chi32 and Chi46 were determined to be Asp-Pro-Typ-Gln-Thr-Asn-Val-Val-Tyr-Thr-Gly-Gln-Asp-Phe-Val-Ser-Pro-Asp-Leu-Phe and Asp-Ala-X-X-Tyr-Arg-Ser-Val-Ala-Tyr-Phe-Val-Asn-Trp-Ala, respectively. Optimal temperature and pH of the Chi32 and Chi46 were found to be both 60°C, and 2.5 and 3.0, respectively. Chi32 was almost inhibited by metal ions Ag+ and Hg2+ while Chi46 by Hg2+ and Pb2+ at a 10 mM concentration but both enzymes were enhanced by 1 mM concentration of Co2+. On analyzing the hydrolyzates of chitin oligomers [(GlcNAc) n , n = 2–6)], it was considered that Chi32 degraded chitin oligomers as an exo-type chitinase while Chi46 as an endo-type chitinase.  相似文献   

20.
For a long time, fungi have been characterized by their ability to secrete enzymes, mostly hydrolytic in function, and thus are defined as extracellular degraders. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications. Particularly, chitinases are used in agriculture to control plant pathogens. Metarhizium anisopliae produces an extracellular chitinase when grown on a medium containing chitin, indicating that synthesis is subject to induction by the substrate. Various sugar combinations were investigated for induction and repression of chitinase. N-acetylglucosamine (GlcNAc) shows a special dual regulation on chitinase production. M. anisopliae has at least two distinct, cell-bound, chitinolytic enzymes when cultured with GlcNAc as one of the carbon sources, and we suggest that this carbohydrate has an important role in protein secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号