首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A wide range of web based prediction and annotation tools are frequently used for determining protein function from sequence. However, parallel processing of sequences for annotation through web tools is not possible due to several constraints in functional programming for multiple queries. Here, we propose the development of APAF as an automated protein annotation filter to overcome some of these difficulties through an integrated approach.  相似文献   

3.
Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were released publicly after we built the Bio-Dictionary that is used in our experiments. Finally, we have computed the annotations of more than 70 complete genomes and made them available on the World Wide Web at http://cbcsrv.watson.ibm.com/Annotations/.  相似文献   

4.
Motivation: The success of genome sequencing has resulted inmany protein sequences without functional annotation. We presentConFunc, an automated Gene Ontology (GO)-based protein functionprediction approach, which uses conserved residues to generatesequence profiles to infer function. ConFunc split sets of sequencesidentified by PSI-BLAST into sub-alignments according to theirGO annotations. Conserved residues are identified for each GOterm sub-alignment for which a position specific scoring matrixis generated. This combination of steps produces a set of feature(GO annotation) derived profiles from which protein functionis predicted. Results: We assess the ability of ConFunc, BLAST and PSI-BLASTto predict protein function in the twilight zone of sequencesimilarity. ConFunc significantly outperforms BLAST & PSI-BLASTobtaining levels of recall and precision that are not obtainedby either method and maximum precision 24% greater than BLAST.Further for a large test set of sequences with homologues oflow sequence identity, at high levels of presicision, ConFuncobtains recall six times greater than BLAST. These results demonstratethe potential for ConFunc to form part of an automated genomicsannotation pipeline. Availability: http://www.sbg.bio.ic.ac.uk/confunc Contact: m.sternberg{at}imperial.ac.uk Supplementary information: Supplementary data are availableat Bioinformatics online. Associate Editor: Dmitrij Frishman  相似文献   

5.

Background  

Current protein clustering methods rely on either sequence or functional similarities between proteins, thereby limiting inferences to one of these areas.  相似文献   

6.
Databases containing proteomic information have become indispensable for virology studies. As the gap between the amount of sequence information and functional characterization widens, increasing efforts are being directed to the development of databases. For virologist, it is therefore desirable to have a single data collection point which integrates research related data from different domains. CHPVDB is our effort to provide virologist such a one‐step information center. We describe herein the creation of CHPVDB, a new database that integrates information of different proteins in to a single resource. For basic curation of protein information, the database relies on features from other selected databases, servers and published reports. This database facilitates significant relationship between molecular analysis, cleavage sites, possible protein functional families assigned to different proteins of Chandipura virus (CHPV) by SVMProt and related tools.  相似文献   

7.
8.
9.
For bioscientists studying protein structure and function, the Protein Family Alignment Annotation Tool (Pfaat) is a useful and simple program for annotating collections of proteins. This open-source software includes methods for viewing and aligning protein families, and for annotating sequence structure and residues with known functions. It offers new options to aid the study of proteins, and an extensible annotation tool for bioinformatics developers.  相似文献   

10.
Uncertainty and inconsistency of gene structure annotation remain limitations on research in the genome era, frustrating both biologists and bioinformaticians, who have to sort out annotation errors for their genes of interest or to generate trustworthy datasets for algorithmic development. It is unrealistic to hope for better software solutions in the near future that would solve all the problems. The issue is all the more urgent with more species being sequenced and analyzed by comparative genomics - erroneous annotations could easily propagate, whereas correct annotations in one species will greatly facilitate annotation of novel genomes. We propose a dynamic, economically feasible solution to the annotation predicament: broad-based, web-technology-enabled community annotation, a prototype of which is now in use for Arabidopsis.  相似文献   

11.
Plant protein annotation in the UniProt Knowledgebase   总被引:3,自引:0,他引:3       下载免费PDF全文
The Swiss-Prot, TrEMBL, Protein Information Resource (PIR), and DNA Data Bank of Japan (DDBJ) protein database activities have united to form the Universal Protein Resource (UniProt) Consortium. UniProt presents three database layers: the UniProt Archive, the UniProt Knowledgebase (UniProtKB), and the UniProt Reference Clusters. The UniProtKB consists of two sections: UniProtKB/Swiss-Prot (fully manually curated entries) and UniProtKB/TrEMBL (automated annotation, classification and extensive cross-references). New releases are published fortnightly. A specific Plant Proteome Annotation Program (http://www.expasy.org/sprot/ppap/) was initiated to cope with the increasing amount of data produced by the complete sequencing of plant genomes. Through UniProt, our aim is to provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information that will allow the plant community to fully explore and utilize the wealth of information available for both plant and non-plant model organisms.  相似文献   

12.
13.
14.
15.
This Sequence Ontology (SO) [13] aims to unify the way in which we describe sequence annotations, by providing a controlled vocabulary of terms and the relationships between them. Using SO terms to label the parts of sequence annotations greatly facilitates downstream analyses of their contents, as it ensures that annotations produced by different groups conform to a single standard. This greatly facilitates analyses of annotation contents and characteristics, e.g. comparisons of UTRs, alternative splicing, etc. Because SO also specifies the relationships between features, e.g. part_of, kind_of, annotations described with SO terms are also better substrates for validation and visualization software.This document provides a step-by-step guide to producing a SO compliant file describing a sequence annotation. We illustrate this by using an annotated gene as an example. First we show where the terms needed to describe the gene's features are located in SO and their relationships to one another. We then show line by line how to format the file to construct a SO compliant annotation of this gene.  相似文献   

16.
SUMMARY: BioEditor is an application to enable scientists and educators to prepare and present structure annotations containing formatted text, graphics, sequence data, and interactive molecular views. It is intended to bridge the gap between printed journal articles and Internet presentation formats. BioEditor is relevant in the era of structural genomics, where annotation and publication could become the rate determining step in structure determination. AVAILABILITY: BioEditor is available at http://bioeditor.sdsc.edu. The Web site includes the latest version of the software for Microsoft Windows, including documentation, the opportunity to submit bug reports and suggestions, example documentaries prepared with BioEditor and a repository where users can submit documentaries for posting to the site.  相似文献   

17.

   

Attempts to engage the scientific community to annotate biological data (such as protein/gene function) stored in databases have not been overly successful. There are several hypotheses on why this has not been successful but it is not clear which of these hypotheses are correct. In this study we have surveyed 50 biologists (who have recently published a paper characterizing a gene or protein) to better understand what would make them interested in providing input/contributions to biological databases. Based on our survey two things become clear: a) database managers need to proactively contact biologists to solicit contributions; and b) potential contributors need to be provided with an easy-to-use interface and clear instructions on what to annotate. Other factors such as 'reward' and 'employer/funding agency recognition' previously perceived as motivators was found to be less important. Based on this study we propose community annotation projects should devote resources to direct solicitation for input and streamlining of the processes or interfaces used to collect this input.  相似文献   

18.
Towards multidimensional genome annotation   总被引:1,自引:0,他引:1  
Our information about the gene content of organisms continues to grow as more genomes are sequenced and gene products are characterized. Sequence-based annotation efforts have led to a list of cellular components, which can be thought of as a one-dimensional annotation. With growing information about component interactions, facilitated by the advancement of various high-throughput technologies, systemic, or two-dimensional, annotations can be generated. Knowledge about the physical arrangement of chromosomes will lead to a three-dimensional spatial annotation of the genome and a fourth dimension of annotation will arise from the study of changes in genome sequences that occur during adaptive evolution. Here we discuss all four levels of genome annotation, with specific emphasis on two-dimensional annotation methods.  相似文献   

19.
20.
Errors in genome annotation   总被引:14,自引:0,他引:14  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号