首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed to determine the role of the wrist, elbow and shoulder joints to single-finger tapping. Six human subjects tapped with their index finger at a rate of 3 taps/s on a keyswitch across five conditions, one freestyle (FS) and four instructed tapping strategies. The four instructed conditions were to tap on a keyswitch using the finger joint only (FO), the wrist joint only (WO), the elbow joint only (EO), and the shoulder joint only (SO). A single-axis force plate measured the fingertip force. An infra-red active-marker three-dimensional motion analysis system measured the movement of the fingertip, hand, forearm, upper arm and trunk. Inverse dynamics estimated joint torques for the metacarpal-phalangeal (MCP), wrist, elbow, and shoulder joints. For FS tapping 27%, 56%, and 18% of the vertical fingertip movement were a result of flexion of the MCP joint and wrist joint and extension of the elbow joint, respectively. During the FS movements the net joint powers between the MCP, wrist and elbow were positively correlated (correlation coefficients between 0.46 and 0.76) suggesting synergistic efforts. For the instructed tapping strategies (FO, WO, EO, and SO), correlations decreased to values below 0.35 suggesting relatively independent control of the different joints. For FS tapping, the kinematic and kinetic data indicate that the wrist and elbow contribute significantly, working in synergy with the finger joints to create the fingertip tapping task.  相似文献   

2.
The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1 N to 6 N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2 N/mm to 7.7 N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping.  相似文献   

3.
It has not been demonstrated whether the human proximal femur behaves linearly elastic when loaded to failure. In the present study we tested to failure 12 cadaveric femurs. Strain was measured (at 5000Hz) on the bone surface with triaxial strain gages (up to 18 on each femur). High-speed videos (up to 18,000frames/s) were taken during the destructive test. To assess the effect of tissue preservation, both fresh-frozen and formalin-fixed specimens were tested. Tests were carried out at two strain-rates covering the physiological range experienced during daily motor tasks. All specimens were broken in only two pieces, with a single fracture surface. The high-speed videos showed that failure occurred as a single abrupt event in less than 0.25ms. In all specimens, fracture started on the lateral side of the neck (tensile stress). The fractured specimens did not show any sign of permanent deformation. The force-displacement curves were highly linear (R(2)>0.98) up to 99% of the fracture force. When the last 1% of the force-displacement curve was included, linearity slightly decreased (minimum R(2)=0.96). Similarly, all force-strain curves were highly linear (R(2)>0.98 up to 99% of the fracture force). The slope of the first part of the force-displacement curve (up to 70% fracture force) differed from the last part of the curve (from 70% to 100% of the fracture force) by less than 17%. Such a difference was comparable to the fluctuations observed between different parts of the curve. Therefore, it can be concluded that the proximal femur has a linear-elastic behavior up to fracture, for physiological strain-rates.  相似文献   

4.
Risk factors for activity-related tendon disorders of the hand include applied force, duration, and rate of loading. Understanding the relationship between external loading conditions and internal tendon forces can elucidate their role in injury and rehabilitation. The goal of this investigation is to determine whether the rate of force applied at the fingertip affects in vivo forces in the flexor digitorum profundus (FDP) tendon and the flexor digitorum superficialis (FDS) tendon during an isometric task. Tendon forces, recorded with buckle force transducers, and fingertip forces were simultaneously measured during open carpal tunnel surgery as subjects (N=15) increased their fingertip force from 0 to 15N in 1, 3, and 10s. The rates of 1.5, 5, and 15N/s did not significantly affect FDP or FDS tendon to fingertip force ratios. For the same applied fingertip force, the FDP tendon generated more force than the FDS. The mean FDP to fingertip ratio was 2.4+/-0.7 while the FDS to tip ratio averaged 1.5+/-1.0 (p<0.01). The fine motor control needed to generate isometric force ramps at these specific loading rates probably required similar high activation levels of multiple finger muscles in order to stabilize the finger and control joint torques at the force rates studied. Therefore, for this task, no additional increase in muscle force was observed at higher rates. These findings suggest that for high precision, isometric pinch maneuvers under static finger conditions, tendon forces are independent of loading rate.  相似文献   

5.
The analysis of the mechanics of the contact interactions of fingers/handle and the stress/strain distributions in the soft tissues in the fingertip is essential to optimize design of tools to reduce many occupation-related hand disorders. In the present study, a three-dimensional (3D) finite element (FE) model for the fingertip is proposed to simulate the nonlinear and time-dependent responses of a fingertip to static and dynamic loadings. The proposed FE model incorporates the essential anatomical structures of a finger: skin layers (outer and inner skins), subcutaneous tissue, bone and nail. The soft tissues (inner skin and subcutaneous tissue) are considered to be nonlinearly viscoelastic, while the hard tissues (outer skin, bone and nail) are considered to be linearly elastic. The proposed model has been used to simulate two loading scenarios: (a) the contact interactions between the fingertip and a flat surface and (b) the indentation of the fingerpad via a sharp wedge. For case (a), the predicted force/displacement relationships and time-dependent force responses are compared with the published experimental data; for case (b), the skin surface deflection profiles were predicted and compared with the published experimental observations. Furthermore, for both cases, the time-dependent stress/strain distributions within the tissues of the fingertip were calculated. The good agreement between the model predictions and the experimental observations indicates that the present model is capable of predicting realistic time-dependent force/displacement responses and stress/strain distributions in the soft tissues for dynamic loading conditions.  相似文献   

6.
The analysis of the mechanics of the contact interactions of fingers/handle and the stress/strain distributions in the soft tissues in the fingertip is essential to optimize design of tools to reduce many occupation-related hand disorders. In the present study, a three-dimensional (3D) finite element (FE) model for the fingertip is proposed to simulate the nonlinear and time-dependent responses of a fingertip to static and dynamic loadings. The proposed FE model incorporates the essential anatomical structures of a finger: skin layers (outer and inner skins), subcutaneous tissue, bone and nail. The soft tissues (inner skin and subcutaneous tissue) are considered to be nonlinearly viscoelastic, while the hard tissues (outer skin, bone and nail) are considered to be linearly elastic. The proposed model has been used to simulate two loading scenarios: (a) the contact interactions between the fingertip and a flat surface and (b) the indentation of the fingerpad via a sharp wedge. For case (a), the predicted force/displacement relationships and time-dependent force responses are compared with the published experimental data; for case (b), the skin surface deflection profiles were predicted and compared with the published experimental observations. Furthermore, for both cases, the time-dependent stress/strain distributions within the tissues of the fingertip were calculated. The good agreement between the model predictions and the experimental observations indicates that the present model is capable of predicting realistic time-dependent force/displacement responses and stress/strain distributions in the soft tissues for dynamic loading conditions.  相似文献   

7.
We designed a simple procedure based on the angular speed of the knee joint for quantitating the patellar tendon reflex. The angular speed of the knee joint is calculated from acceleration data generated in response to the tapping force applied to the patellar tendon with a customized tendon hammer and measured using a tri-axial accelerometer placed at the ankle joint. Data were collected and processed using a signal analyzer and a notebook PC. The results obtained using standard equipment were similar to those generated by more elaborate devices. For instance, the time delay (29.6+/-6.0 ms) and the acceleration time (150.8+/-19.5 ms) of the speed response were quite constant for all participants within the range of tapping forces normally applied during physical examinations. Representative relationships between the peak tapping force and the peak angular speed also closely fit with the exponential model (the average coefficient of determination, 0.70; range, 0.43-0.97). In contrast, the mean asymptotic value of the peak angular speed (Omega(pas)) was 160+/-67 degrees/s for spastic individuals, compared with only 72+/-21 degrees/s for healthy individuals. The important features of this method are portability, ease of use, and non-constraint of solicited reflex responses.  相似文献   

8.
Since musculoskeletal disorders of the upper extremities are believed to be associated with repetitive excessive muscle force production in the hands, understanding the time-dependent muscle forces during key tapping is essential for exploring the mechanisms of disease initiation and development. In the current study, we have simulated the time-dependent dynamic loading in the muscle/tendons in an index finger during tapping. The index finger model is developed using a commercial software package AnyBody, and it contains seven muscle/tendons that connect the three phalangeal finger sections. Our simulations indicate that the ratios of the maximal forces in flexor digitorum superficialis (FS) and flexor digitorum profundus (FP) tendons to the maximal force at the fingertip are 0.95 and 2.9, respectively, which agree well with recently published experimental data. The time sequence of the finger muscle activation predicted in the current study is consistent with the EMG data in the literature. The proposed model will be useful for bioengineers and ergonomic designers to improve keyboard design minimizing musculoskeletal loadings in the fingers.  相似文献   

9.
Successful completion of development requires coordination of patterning events with morphogenetic movements. Environmental variability challenges this coordination. For example, developing organisms encounter varying environmental temperatures that can strongly influence developmental rates. We hypothesized that the mechanics of morphogenesis would have to be finely adjusted to allow for normal morphogenesis across a wide range of developmental rates. We formulated our hypothesis as a simple model incorporating time-dependent application of force to a viscoelastic tissue. This model suggested that the capacity to maintain normal morphogenesis across a range of temperatures would depend on how both tissue viscoelasticity and the forces that drive deformation vary with temperature. To test this model we investigated how the mechanical behavior of embryonic tissue (Xenopus laevis) changed with temperature; we used a combination of micropipette aspiration to measure viscoelasticity, electrically induced contractions to measure cellular force generation, and confocal microscopy to measure endogenous contractility. Contrary to expectations, the viscoelasticity of the tissues and peak contractile tension proved invariant with temperature even as rates of force generation and gastrulation movements varied three-fold. Furthermore, the relative rates of different gastrulation movements varied with temperature: the speed of blastopore closure increased more slowly with temperature than the speed of the dorsal-to-ventral progression of involution. The changes in the relative rates of different tissue movements can be explained by the viscoelastic deformation model given observed viscoelastic properties, but only if morphogenetic forces increase slowly rather than all at once.  相似文献   

10.
The purpose of the present study is to investigate whether distribution patterns of the maximum fingertip force in all directions from 0 deg to 360 deg around the index fingertip are the same among subjects. Distributions of the maximum index fingertip force were measured at four finger postures for five subjects (healthy males, ages 21 to 25). It became apparent that distribution patterns of the fingertip force were very similar among subjects, through the application of an analysis of variance (level of significance: 5%) to the measurement results. In the production of the maximum fingertip force, Valero-Cuevas et al. [1998, 2000] reported that patterns of control signals for driving muscle forces were common among subjects. The results of the present study indicate that patterns of maximum fingertip force are also similar among subjects. Therefore, the possibility is high that the static transfer characteristic for index fingers from input (i.e., control signals to muscles) to output (ie., the maximum fingertip force) is also common among subjects.  相似文献   

11.
We studied the dynamic behavior of finger joints during the contact period of tapping on a computer keyswitch, to characterize and parameterize joint function with a lumped-parameter impedance model. We tested the hypothesis that the metacarpophalangeal (MCP) and interphalangeal (IP) joints act similarly in terms of kinematics, torque, and energy production when tapping. Fifteen human subjects tapped with the index finger of the right hand on a computer keyswitch mounted on a two-axis force sensor, which measured forces in the vertical and sagittal planes. Miniature fiber-optic goniometers mounted across the dorsal side of each joint measured joint kinematics. Joint torques were calculated from endpoint forces and joint kinematics using an inverse dynamic algorithm. For each joint, a linear spring and damper model was fitted to joint torque, position, and velocity during the contact period of each tap (22 per subject on average). The spring-damper model could account for over 90% of the variance in torque when loading and unloading portions of the contact were separated, with model parameters comparable to those previously measured during isometric loading of the finger. The finger joints functioned differently, as illustrated by energy production during the contact period. During the loading phase of contact the MCP joint flexed and produced energy, whereas the proximal and distal IP joints extended and absorbed energy. These results suggest that the MCP joint does work on the interphalangeal joints as well as on the keyswitch.  相似文献   

12.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

13.
Fatigue is a major limitation to the clinical application of functional electrical stimulation. The activation pattern used during electrical stimulation affects force and fatigue. Identifying the activation pattern that produces the greatest force and least fatigue for each patient is, therefore, of great importance. Mathematical models that predict muscle forces and fatigue produced by a wide range of stimulation patterns would facilitate the search for optimal patterns. Previously, we developed a mathematical isometric force model that successfully identified the stimulation patterns that produced the greatest forces from healthy subjects under nonfatigue and fatigue conditions. The present study introduces a four-parameter fatigue model, coupled with the force model that predicts the fatigue induced by different stimulation patterns on different days during isometric contractions. This fatigue model accounted for 90% of the variability in forces produced by different fatigue tests. The predicted forces at the end of fatigue testing differed from those observed by only 9%. This model demonstrates the potential for predicting muscle fatigue in response to a wide range of stimulation patterns.  相似文献   

14.
15.
The shearing strain of the human fingertip plays an important role in the determination of the optimal grasping force and in the perception of texture. Most research concerned with the mechanical impedance of the human fingertips has treated the orthogonal direction to the tip surface, and little attention has been paid to the tangential direction. This paper describes impedance characteristics of the human fingertips in the tangential directions to the tip surface. In the experiment, step and ramp shearing forces were individually applied to the tips of the thumb, middle finger, and little finger. Dynamics of the fingertips were represented by the Kelvin model. Experimental results show that each fingertip had different properties with respect to the shearing strain versus the applied force, and that the thumb had the strongest shearing stiffness among these three digits. Moreover, the shearing stiffness depended on the direction of the applied force, and the stiffness in the pointing direction was stronger than that in the perpendicular direction. As the contact force in the orthogonal direction to the fingertip surface was increased, the shearing stiffness and viscosity increased without regard to the load speed of the shearing force. Furthermore, it is shown that the average strain rate of the fingertip in the tangential direction to the fingertip surface became slower and converged to a constant value with higher contact forces.  相似文献   

16.
Pheasant and O'Neill's torque model (1975) was modified to account for grip force distributions. The modified model suggests that skin friction produced by twisting an object in the direction of fingertips causes flexion of the distal phalanges and increases grip force and, thus, torque. Twelve subjects grasped a cylindrical object with diameters of 45.1, 57.8, and 83.2 mm in a power grip, and performed maximum torque exertions about the long axis of the handle in two directions: the direction the thumb points and the direction the fingertips point. Normal force on the fingertips increased with torque toward the fingertips, as predicted by the model. Consequently, torque toward the fingertips was 22% greater than torque toward the thumb. Measured torque and fingertip forces were compared with model predictions. Torque could be predicted well by the model. Measured fingertip force and thumb force were, on average, 27% less than the predicted values. Consistent with previous studies, grip force decreased as the handle diameter increased from 45.1 to 83.2 mm. This may be due not only to the muscle length-strength relationship, but also to major active force locations on the hand: grip force distributions suggest that a small handle allows fingertip force and thumb force to work together against the palm, resulting in a high reaction force on the palm, and, therefore, a high grip force. For a large handle, fingertip force and thumb force act against each other, resulting in little reaction force on the palm and, thus, a low grip force.  相似文献   

17.
The objective of this study was to identify the impact of modifying the object width on muscle and joint forces while gripping objects. The experimental protocol consisted to maintain horizontally five objects of different widths (3.5, 4.5, 5.5, 6.5, and 7.5 cm) with a thumb-index finger grip. Subjects were required to grasp spontaneously the object without any instruction regarding the grip force (GF) to apply. A biomechanical model of thumb-index finger pinch was developed to estimate muscle and joint forces. This model included electromyography, fingertip force, and kinematics data as inputs. The finger joint postures and the GF varied across the object widths. The estimated muscle forces also varied significantly according to the object width. Interestingly, we observed that the muscle force/GF ratios of major flexor muscles remain particularly stable with respect to the width whereas other muscle ratios differed largely. This may argue for a control strategy in which the actions of flexors were preserved in spite of change in joint postures. The estimated joint forces tended to increase with object width and increased in the distal-proximal sense. Overall, these results are of importance for the ergonomic design of handheld objects and for clinical applications.  相似文献   

18.
Anticipatory force planning during grasping is based on visual cues about the object’s physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object’s center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object’s center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object’s CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.  相似文献   

19.
A numerical optimization procedure was used to determine finger positions that minimize and maximize finger tendon and joint force objective functions during piano play. A biomechanical finger model for sagittal plane motion, based on finger anatomy, was used to investigate finger tendon tensions and joint reaction forces for finger positions used in playing the piano. For commonly used piano key strike positions, flexor and intrinsic muscle tendon tensions ranged from 0.7 to 3.2 times the fingertip key strike force, while resultant inter-joint compressive forces ranged from 2 to 7 times the magnitude of the fingertip force. In general, use of a curved finger position, with a large metacarpophalangeal joint flexion angle and a small proximal interphalangeal joint flexion angle, reduces flexor tendon tension and resultant finger joint force.  相似文献   

20.
A slightly flexed human middle finger can balance an external force on the fingertip. Internal stabilization is also possible, which means that the externally unloaded finger can be kept stiff. We want to analyse whether in these situations the intrinsic hand muscles are needed. Distances from tendons to flexion axes are taken from the literature and are substituted in the moment equilibrium equations of a two-dimensional finger model. Diagrams illustrate the statically indeterminate problem of solving tendon forces. The possibilities for equilibrium without intrinsics appear to depend mainly on four tendon-to-joint distances. These distances determine to which of two groups a finger belongs: (1) one in which intrinsics are not necessary for internal stabilization nor for balancing a force on the fingertip in any direction in the sagittal plane; (2) one in which, without intrinsics, internal stabilization is impossible and only dorso-distally directed forces on the fingertip can be balanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号