共查询到20条相似文献,搜索用时 15 毫秒
1.
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect. 相似文献
2.
Recognition of important roles of gangliosides in normal and abnormal cell function has motivated pharmacological modification of cellular ganglioside content. However, constitutive depletion of gangliosides in untransformed human cells has not been reported. In this context, the recent identification of a kindred carrying a point mutation in the GM3 synthase [ST3Gal5, Siat9] gene (Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH. 2004. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet. 36:1225-1229) provided an opportunity to explore this possibility. We established primary cultures of skin fibroblasts of three patients homozygous for this autosomal recessive defect. They exhibited a 93% reduction in ganglioside content (0.8 +/- 0.2 nmol lipid-bound sialic acid per 10(7) cells versus 12.7 +/- 1.3 nmol per 10(7) normal fibroblasts). Importantly, this marked reduction was not compensated by the activation of an alternate pathway of ganglioside synthesis, as occurs in murine GM3 synthase knockout fibroblasts. Cell morphology appeared unaffected, but under stringent conditions EGF-induced proliferation and migration of the mutant fibroblasts were reduced by 80% and 60%, respectively. Probing potential explanations, we found that EGF binding (effective membrane EGF receptor (EGFR) number) was reduced by 52% (to 6.2 +/- 1.9 from 12.8 +/- 2.0 pmol/10(8) normal fibroblasts, P < 0.01), despite normal total EGFR protein. EGFR activation was likewise reduced as was EGF-induced Rho/Rac1 phosphorylation, which is associated with cell migration. We conclude that this GM3 synthase point mutation almost completely depletes human fibroblast cellular gangliosides, dampens membrane EGFR activation, and modulates related critical cell functions such as proliferation and migration. These cells offer a valuable model for the study of ganglioside modulation of cell function. 相似文献
3.
4.
N. V. Prokazova N. N. Samovilova E. V. Gracheva N. K. Golovanova 《Biochemistry. Biokhimii?a》2009,74(3):235-249
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis. 相似文献
5.
Role of rab5 in EGF receptor-mediated signal transduction 总被引:1,自引:0,他引:1
Barbieri MA Fernandez-Pol S Hunker C Horazdovsky BH Stahl PD 《European journal of cell biology》2004,83(6):305-314
6.
The tethering arm of the EGF receptor is required for negative cooperativity and signal transduction
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer. 相似文献
7.
Maurizio Sorice Agostina Longo Tina Garofalo Vincenzo Mattei Roberta Misasi Antonio Pavan 《Glycoconjugate journal》2003,20(1):63-70
Gangliosides, sialic acid containing glycosphigolipids, are ubiquitous constituents of cell plasma membranes. Each cell type
shows a peculiar ganglioside expression pattern. In human T lymphocytes monosialoganglioside GM3 represents the main ganglioside
constituent of cell plasma membrane where it is concentrated in glycosphingolipid-enriched microdomains (GEM). The presence
of tyrosine kinase receptors, mono- (Ras, Rap) and heterotrimeric G proteins, Src-like tyrosine kinases (lck, lyn, fyn), PKC
isozymes, glycosylphosphatidylinositol (GPI)-anchored proteins and, after T cell activation, the Syk-family kinase Zap-70,
prompts these portions of the plasma membrane to be considered as “glycosignaling domains.” In particular, during T cell activation
and/or other dynamic functions of the cell, such as apoptosis, key signaling molecules are recruited to these microdomains,
where they strictly interact with GM3. The association of transducer proteins with GM3 in microdomains suggests that this
ganglioside is the main marker of GEM in human lymphocytes and is a component of a cell plasma membrane multimolecular signaling
complex involved in cell-cell interaction, signal transduction, and cell activation. Published in 2004.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
8.
Gangliosides, sialic acid containing glycosphigolipids, are ubiquitous constituents of cell plasma membranes. Each cell type shows a peculiar ganglioside expression pattern. In human T lymphocytes monosialoganglioside GM3 represents the main ganglioside constituent of cell plasma membrane where it is concentrated in glycosphingolipid-enriched microdomains (GEM). The presence of tyrosine kinase receptors, mono- (Ras, Rap) and heterotrimeric G proteins, Src-like tyrosine kinases (lck, lyn, fyn), PKC isozymes, glycosylphosphatidylinositol (GPI)-anchored proteins and, after T cell activation, the Syk-family kinase Zap-70, prompts these portions of the plasma membrane to be considered as "glycosignaling domains." In particular, during T cell activation and/or other dynamic functions of the cell, such as apoptosis, key signaling molecules are recruited to these microdomains, where they strictly interact with GM3. The association of transducer proteins with GM3 in microdomains suggests that this ganglioside is the main marker of GEM in human lymphocytes and is a component of a cell plasma membrane multimolecular signaling complex involved in cell-cell interaction, signal transduction, and cell activation. 相似文献
9.
E V Diatlovitskaia A B Koroleva V S Suskova V I Emets L V Sutiusheva L D Bergel'son 《Bioorganicheskaia khimiia》1990,16(3):402-406
The derivatives of ganglioside GM3-NeuLacCer. NeuLacSph and NeuAcLacSphAc-were obtained and their immunomodulating properties studied. These substances are shown to inhibit lymphocyte blast-transformation independently of their ceramide structure. On the contrary, the stimulation by the above GM3-derivatives of Con A-induced T-suppressor activity depends significantly on the structure of their ceramide moiety. 相似文献
10.
11.
Garofalo T Sorice M Misasi R Cinque B Mattei V Pontieri GM Cifone MG Pavan A 《Journal of lipid research》2002,43(6):971-978
In this study we analyzed the signaling pathway triggered by GM3 in lymphoblastoid T-cells. In these cells, GM3 induced cPLA2 activation, arachidonic acid release, and PKC-delta translocation. In order to clarify the upstream molecular signals triggered by GM3, we analyzed the activation of extracellular signal-regulated kinase (ERK)s, a downstream effector of Ras-regulated cytoplasmic kinase cascade. Our results showed that GM3 treatment led to rapid ERK phosphorylation in lymphoblastoid T-cells, as detected by anti-phospho-p44/42 MAP kinase. Similar findings were found in human peripheral blood lymphocytes. Moreover, we showed that GM3 specifically phosphorylated ERK-2, as revealed by anti-phosphotyrosine reactivity on both cell free lysates and ERKs immunoprecipitates. The role of the CD4 cytoplasmic domain in GM3-triggered signaling pathway was investigated using A2.01/CD4-cyt399 cells, which had been transfected with a mutant form of CD4 lacking the bulk of the cytoplasmic domain. In these cells GM3 induced cPLA2 activation, arachidonic acid release, and PKC-delta translocation, but not CD4 endocytosis, indicating that the CD4 cytoplasmic domain plays a key role in GM3-triggered CD4 endocytosis and the GM3-triggered biochemical pathway is upstream of CD4 phosphorylation. These findings strongly suggest that GM3 triggers a novel signaling pathway involved in the regulation of cellular functions. 相似文献
12.
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. 相似文献
13.
Cyclopamine inhibition of Sonic hedgehog signal transduction is not mediated through effects on cholesterol transport 总被引:6,自引:0,他引:6
Incardona JP Gaffield W Lange Y Cooney A Pentchev PG Liu S Watson JA Kapur RP Roelink H 《Developmental biology》2000,224(2):440-452
Cyclopamine is a teratogenic steroidal alkaloid that causes cyclopia by blocking Sonic hedgehog (Shh) signal transduction. We have tested whether this activity of cyclopamine is related to disruption of cellular cholesterol transport and putative secondary effects on the Shh receptor, Patched (Ptc). First, we report that the potent antagonism of Shh signaling by cyclopamine is not a general property of steroidal alkaloids with similar structure. The structural features of steroidal alkaloids previously associated with the induction of holoprosencephaly in whole animals are also associated with inhibition of Shh signaling in vitro. Second, by comparing the effects of cyclopamine on Shh signaling with those of compounds known to block cholesterol transport, we show that the action of cyclopamine cannot be explained by inhibition of intracellular cholesterol transport. However, compounds that block cholesterol transport by affecting the vesicular trafficking of the Niemann-Pick C1 protein (NPC1), which is structurally similar to Ptc, are weak Shh antagonists. Rather than supporting a direct link between cholesterol homeostasis and Shh signaling, our findings suggest that the functions of both NPC1 and Ptc involve a common vesicular transport pathway. Consistent with this model, we find that Ptc and NPC1 colocalize extensively in a vesicular compartment in cotransfected cells. 相似文献
14.
《Critical reviews in biochemistry and molecular biology》2013,48(2):194-206
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. 相似文献
15.
Smith DM Coppock HA Withers DJ Owji AA Hay DL Choksi TP Chakravarty P Legon S Poyner DR 《Biochemical Society transactions》2002,30(4):432-437
Adrenomedullin is a vascular tissue peptide and a member of the calcitonin family of peptides, which includes calcitonin, calcitonin-gene-related peptide (CGRP) and amylin. Its many biological actions are mediated via CGRP type 1 (CGRP(1)) receptors and by specific adrenomedullin receptors. Although the pharmacology of these receptors is distinct, they are both represented in molecular terms by the type II family G-protein-coupled receptor, calcitonin-receptor-like receptor (CRLR). The specificity here is defined by co-expression of receptor-activity-modifying proteins (RAMPs). CGRP(1) receptors are represented by CRLR and RAMP1, and specific adrenomedullin receptors by CRLR and RAMP2 or 3. Here we discuss how CRLR/RAMP2 relates to adrenomedullin binding, pharmacology and pathophysiology, and how chemical cross-linking of receptor-ligand complexes in tissue relates to that in CRLR/RAMP2-expressing cells. CRLR, like other type II family G-protein-coupled receptors, signals via G(s) and adenylate cyclase activation. We demonstrated that adrenomedullin signalling in cell lines expressing specific adrenomedullin receptors followed this expected pattern. 相似文献
16.
油菜素内酯(brassinosteroids,BRs)是一类重要的类固醇激素,参与调控植物生长发育的许多过程。结合应用遗传学、生物化学以及蛋白质组学等研究手段现已基本阐明了BR信号转导的主要过程。BRI1作为受体在细胞表面感知BR,BRI1抑制子BKI1从质膜上解离下来,使BRI1与其共受体BAK1结合。BRI1和BAK1通过顺序磷酸化将BR信号完全激活。活化的BRI1将BSK磷酸化激活,BSK活化BSU1,BSU1将BIN2去磷酸化使其失活,解除BIN2对BES1/BZR1的抑制功能。PP2A可以将BES1/BZR1去磷酸化激活,又可以将受体BRI1去磷酸化促使其降解。BR信号的传递最终使去磷酸化状态的BES1/BZR1在细胞内累积,激活BR信号通路下游的转录调控。 相似文献
17.
We found that sparse and confluent C6 glioma cells differ both in GM3 content, which increases with cell density, and in endothelin-1 (ET-1)-induced phosphoinositide hydrolysis, which was markedly higher in the sparse cells than in the confluent. Also after manipulation of the cellular GM3 content through treatment with exogenous GM3 or with drugs known to affect GM3 metabolism, the ET-1 effect was inversely related to GM3 cellular levels. Cell treatment with an anti-GM3 mAb resulted in the enhancement of ET-1-induced phospholipase C activation and restored the capacity of GM3-treated cells to respond to ET-1. These findings suggest that the GM3 ganglioside represents a physiological modulator of ET-1 signaling in glial cells. 相似文献
18.
19.
Using steady-state fluorescence and nanosecond time-resolved fluorescence techniques, the ca2+ ATPase conformational changes induced by ganglioside GM3 were studied with different quenchers. The results showed that GM3 could significantly increase the lifetime of intrinsic fluorescence of Ca2+-ATPase reconstituted into proteoliposomes, and could also weaken the intrinsic fluorescence quenching by KI or hypocrellin B, HB. Furthermore, by using quenching kinetic analysis of the time-resolved fluorescence, in the presence of GM3, the quenching constant (K3V) and quenching efficiency were significantly lowered. The obtained results suggest that the oligosaccharide chain and the ceramide moieties of the GM3 molecule could interact with its counterparts of the ca2+-ATPase respectively, thus change the conformation of the hydrophobic domain of the enzyme, making the tryptophan residues in different regions shift towards the hydrophilic-hydrophobic interface, and hence shorten the distance between the hydrophilic and the hydrophobic domains, making the enzyme with a more compact form exhibit higher enzyme activity. 相似文献
20.
Controversy exists over the relationship between the cAMP and IP3 pathways in vertebrate olfactory signal transduction, as this process is known to occur by either of the two pathways. Recent studies have shown that a single olfactory neuron responds to both cAMP- and IP3-producing odorants, suggesting the existence of an olfactory receptor protein that can recognize both ligands. In this study we found that the rat olfactory receptor I7, stably expressed in HEK-293 cells, triggers the cAMP pathway upon stimulation by a specific odorant (octanal) at concentrations lower than 10(-4) M; however, the receptor triggers both pathways at higher concentrations. This indicates that a single olfactory receptor, stimulated by a single pathway-inducing odorant, can evoke both pathways at high odorant concentrations. Using this heterologous system, both the dose-dependent response and receptor I7 specificity were analyzed. The dose-dependent Ca2+ response curve, which also includes the release of Ca2+ ions from internal stores at high odorant concentrations, was not monotonous, but had a local maximum and minimum with 10(-10) and 10(-7) M octanal, respectively, and reached a plateau at 10(-2) M octanal. The specificity of the I7 receptor was lower when exposed to higher concentrations of odorants. 相似文献