首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
Recombinant p64, p65, p24, p22, p21 of the beet yellows closterovirus and pcp, hel, mtr, and pol fragments encoded by the replication genes of the virus were purified and tested for RNA binding. North-Western blotting revealed the RNA-binding activity for p64 and hel a 21-kDa fragment of the helicase domain with conserved motifs V and VI. Gel retardation assay confirmed hel binding with a randomized RNA probe in vitro, and a cooperative RNA-hel interaction was assumed on evidence of the binding pattern. The RNA-hel complexes proved to be stable at a high ionic strength.  相似文献   

2.
3.
Dicer is a member of the ribonuclease III enzyme family and processes double‐stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non‐canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double‐stranded RNA‐binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA‐binding surface. The second dsRNA binding domain at C‐terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem‐loop structure of the RNA substrate, suggesting the possibility that stem‐loop RNA‐guided gene silencing pathway exists in budding yeast.  相似文献   

4.
RNA–protein interactions are the structural and functional basis of significant numbers of RNA molecules. RNA–protein interaction assays though, still mainly depend on biochemical tests in vitro. Here, we establish a convenient and reliable RNA fluorescent three-hybrid (rF3H) method to detect/interrogate the interactions between RNAs and proteins in cells. A GFP tagged highly specific RNA trap is constructed to anchor the RNA of interest to an artificial or natural subcellular structure, and RNA–protein interactions can be detected and visualized by the enrichment of RNA binding proteins (RBPs) at these structures. Different RNA trapping systems are developed and detection of RNA–protein complexes at multiple subcellular structures are assayed. With this new toolset, interactions between proteins and mRNA or noncoding RNAs are characterized, including the interaction between a long noncoding RNA and an epigenetic modulator. Our approach provides a flexible and reliable method for the characterization of RNA–protein interactions in living cells.  相似文献   

5.
A set of >300 nonredundant high-resolution RNA–protein complexes were rigorously searched for π-contacts between an amino acid side chain (W, H, F, Y, R, E and D) and an RNA nucleobase (denoted π–π interaction) or ribose moiety (denoted sugar–π). The resulting dataset of >1500 RNA–protein π-contacts were visually inspected and classified based on the interaction type, and amino acids and RNA components involved. More than 80% of structures searched contained at least one RNA–protein π-interaction, with π–π contacts making up 59% of the identified interactions. RNA–protein π–π and sugar–π contacts exhibit a range in the RNA and protein components involved, relative monomer orientations and quantum mechanically predicted binding energies. Interestingly, π–π and sugar–π interactions occur more frequently with RNA (4.8 contacts/structure) than DNA (2.6). Moreover, the maximum stability is greater for RNA–protein contacts than DNA–protein interactions. In addition to highlighting distinct differences between RNA and DNA–protein binding, this work has generated the largest dataset of RNA–protein π-interactions to date, thereby underscoring that RNA–protein π-contacts are ubiquitous in nature, and key to the stability and function of RNA–protein complexes.  相似文献   

6.
Vlassov  A.  Yarus  M. 《Molecular Biology》2002,36(3):389-393
RNAs binding with liposomes under near-physiological conditions were obtained by molecular selection. Structural analysis showed that the RNAs could form complexes owing to complementary sequences located in loops. Oligomerization of the RNAs selected was experimentally confirmed. The results and published data testified that formation of high-molecular-weight complexes is a major mechanism increasing the RNA affinity for phospholipid membranes. The role of RNA–membrane interactions in early evolution is discussed in terms of the RNA world hypothesis.  相似文献   

7.
Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non‐coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose‐induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular‐related RNA‐binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA‐binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR‐26b‐5p, and QKI5 was speculated as the target of miR‐26b‐5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR‐26b‐5p/QKI‐5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.  相似文献   

8.
9.
10.
Tok JB  Cho J  Rando RR 《Nucleic acids research》2000,28(15):2902-2910
RNA–RNA recognition is a critical process in controlling many key biological events, such as translation and ribozyme functions. The recognition process governing RNA–RNA interactions can involve complementary Watson–Crick (WC) base pair binding, or can involve binding through tertiary structural interaction. Hence, it is of interest to determine which of the RNA–RNA binding events might emerge through an in vitro selection process. The A-site of the 16S rRNA decoding region was chosen as the target, both because it possesses several different RNA structural motifs, and because it is the rRNA site where codon/anticodon recognition occurs requiring recognition of both mRNA and tRNA. It is shown here that a single family of RNA molecules can be readily selected from two different sizes of RNA library. The tightest binding aptamer to the A-site 16S rRNA construct, 109.2-3, has its consensus sequences confined to a stem–loop region, which contains three nucleotides complementary to three of the four nucleotides in the stem–loop region of the A-site 16S rRNA. Point mutations on each of the three nucleotides on the stem–loop of the aptamer abolish its binding capacity. These studies suggest that the RNA aptamer 109.2-3 interacts with the simple 27 nt A-site decoding region of 16S rRNA through their respective stem–loops. The most probable mode of interaction is through complementary WC base pairing, commonly referred to as a loop–loop ‘kissing’ motif. High affinity binding to the other structural motifs in the decoding region were not observed.  相似文献   

11.
Locked nucleic acid (LNA) is a chemically modified nucleic acid with its sugar ring locked in an RNA-like (C3′-endo) conformation. LNAs show extraordinary thermal stabilities when hybridized with DNA, RNA or LNA itself. We performed molecular dynamics simulations on five isosequential duplexes (LNA–DNA, LNA–LNA, LNA–RNA, RNA–DNA and RNA–RNA) in order to characterize their structure, dynamics and hydration. Structurally, the LNA–DNA and LNA–RNA duplexes are found to be similar to regular RNA–DNA and RNA–RNA duplexes, whereas the LNA–LNA duplex is found to have its helix partly unwound and does not resemble RNA–RNA duplex in a number of properties. Duplexes with an LNA strand have on average longer interstrand phosphate distances compared to RNA–DNA and RNA–RNA duplexes. Furthermore, intrastrand phosphate distances in LNA strands are found to be shorter than in DNA and slightly shorter than in RNA. In case of induced sugar puckering, LNA is found to tune the sugar puckers in partner DNA strand toward C3′-endo conformations more efficiently than RNA. The LNA–LNA duplex has lesser backbone flexibility compared to the RNA–RNA duplex. Finally, LNA is less hydrated compared to DNA or RNA but is found to have a well-organized water structure.  相似文献   

12.
R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA–DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA–DNA hybrids. GFP-dRNH1 binds strongly to RNA–DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA–DNA hybrids under a wide range of conditions.  相似文献   

13.
A hypothetical evolutionary pathway from a ribozyme to a catalytic RNA–protein complex (RNP) is proposed and examined. In this hypothesis for an early phase of molecular evolution, one RNA–RNA interaction in the starting ribozyme is replaced with an RNA–protein interaction via two intermediary stages. At each stage, the original RNA–RNA interaction and a newly introduced RNA–protein interaction are designed to coexist. The catalytic RNPs corresponding to the intermediary stages were constructed by employing the Tetrahymena ribozyme together with molecular modeling. Analyses of the RNPs indicate that the protein can fully replace the original role of the RNA–RNA interaction in the starting ribozyme and that the association of a protein with a ribozyme might be beneficial for improving the ribozymatic activity.  相似文献   

14.
15.
Shabalina  S. A. 《Molecular Biology》2002,36(3):359-364
The results of computer analysis of complementarity regions in the sequences of E. coli 16S rRNA, mRNAs and tRNAs are reported in this article. The potential regions of intermolecular RNA–RNA hybridization, or clinger fragments, in 16S rRNA, which are complementary to the sites frequently occurring in mRNAs and tRNAs, were found. Major clinger fragments on 16S rRNA are universal for genes that belong to different functional groups. Our results show there are adaptations of the structural organization of the 16S rRNA molecule to messenger and transport RNA sequences. RNA interaction with clinger fragments may contribute to upregulation of the translation process through increasing the local concentration of mRNAs and tRNAs in the vicinity of the ribosome and their proper positioning, as well as decrease the efficiency of translation through nonspecific mRNA–16SrRNA interactions.  相似文献   

16.
The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA–protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA–protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.  相似文献   

17.
18.
The N terminal region of hepatitis delta antigen (HDAg), referred to here as NdAg, has a nucleic acid chaperone activity that modulates the ribozyme activity of hepatitis delta virus (HDV) RNA and stimulates hammerhead ribozyme catalysis. We characterized the nucleic acid binding properties of NdAg, identified the structural and sequence domains important for nucleic acid binding, and studied the correlation between the nucleic acid binding ability and the nucleic acid chaperone activity. NdAg does not recognize the catalytic core of HDV ribozyme specifically. Instead, NdAg interacts with a variety of nucleic acids and has higher affinities to longer nucleic acids. The studies with RNA homopolymers reveal that the binding site size of NdAg is around nine nucleotides long. The extreme N terminal portion of NdAg, the following coiled-coil domain and the basic amino acid clusters in these regions are important for nucleic acid binding. The nucleic acid–NdAg complex is stabilized largely by electrostatic interactions. The formation of RNA–protein complex appears to be a prerequisite for facilitating hammerhead ribozyme catalysis of NdAg and its derivatives. Mutations that reduce the RNA binding activity or high ionic strength that destabilizes the RNA–protein complex, reduce the nucleic acid chaperone activity of NdAg.  相似文献   

19.
Pif1p is the prototypical member of the PIF1 family of DNA helicases, a subfamily of SFI helicases conserved from yeast to humans. Baker's yeast Pif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and may also have a general role in chromosomal replication by affecting Okazaki fragment maturation. Here we investigate the substrate preferences for Pif1p. The enzyme was preferentially active on RNA–DNA hybrids, as seen by faster unwinding rates on RNA–DNA hybrids compared to DNA–DNA hybrids. When using forked substrates, which have been shown previously to stimulate the enzyme, Pif1p demonstrated a preference for RNA–DNA hybrids. This preferential unwinding could not be correlated to preferential binding of Pif1p to the substrates that were the most readily unwound. Although the addition of the single-strand DNA-binding protein replication protein A (RPA) stimulated the helicase reaction on all substrates, it did not diminish the preference of Pif1p for RNA–DNA substrates. Thus, forked RNA–DNA substrates are the favored substrates for Pif1p in vitro. We discuss these findings in terms of the known biological roles of the enzyme.  相似文献   

20.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号