首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
The results of investigations carried out to study the effect of gamma radiation on the properties of the purified preparations of cholera exotoxin are presented. Irradiation has been shown to decrease the anterotoxicity of purified choleragen and the activity of its permeability factor, depending on the radiation dose. The investigations have revealed that in purified toxin enterotoxicity is completely inactivated with a lover radiation dose than in crude toxin filtrate (25 kGy). In immunochemical reactions the increase of the electrophoretic mobility of the choleragen components, correlated with the increase of the radiation dose, and the reduced number of protein zones have been observed. The irradiated preparations of purified choleragen have been found to retain their immunogenic properties and serological activity.  相似文献   

2.
The immunochemical properties and serological activity of irradiated preparations of crude cholera exotoxin have been studied. This study has revealed that with the increase of the dose of ionizing radiation changes occur in the physico-chemical properties of the preparations of the toxin, which leads to an increase in the electrophoretic motility of the protein components of the toxin, to the aggregation and polymerization of individual fragments. The preparations of antigen exotoxins have been shown to retain their serological activity within the range of radiation doses under study (10-350 kGy).  相似文献   

3.
The paper handles the problem of the inactivation of the toxinogenic strain Aspergillus flavus following the application of gamma radiation to wheat. The amount of the applied dose and of the absorbed dose of ionizing radiation upon the inhibition of mycelium growth and toxin production were defined. The aflatoxin B1 was determined by extracting in chloroform and developed on Silufol R within the choroform; aceton system. The applied doses of gamma radiation (3-30 kGy) have show that the absorbed dose does not inhibit aflatoxin production. By combining the action of gamma radiation with humidity of the wheat (humidity 13-15%; 25% irradiation 6 kGy) an inactivation was reached. With the help of toxicologico-genetical tests (the Dominant Lethal Mutations Test, the Three Generations Test) the influence was traced of contaminated, irradiated substrates upon the health of experimental animals. It follows from the results obtained that in long-term feeding with contaminated wheat irradiated by gamma rays no positive mutagenic activity has been recorded. It allows to presume that wheat of humidity of 25% contaminated by a weakly toxigenic strain Aspergillus flavus irradiated by a dose of 6 kGy, and wheat of a humidity of 13-15%, contaminated by a strongly toxinogenic strain of Aspergillus flavus, irradiated by a dose of 6 kGy, are no genetic risk for white rats.  相似文献   

4.
Snake bites represent a serious public health problem in many areas of the world. In Algeria, two widespread snakes are Vipera lebetina and Cerastes cerastes. Vipera lebetina venom causes local hemorrhage and necrosis, and it may lead to permanent limb loss. The principal causes of mortality after snakebites are acute renal failure and hemorrhage, which occur not only locally, at the site of the bite, but also systemically, contributing to the cardiovascular shock characteristic of severe envenomation. Gamma radiation has been shown to be effective for attenuating venom toxicity. Vipera lebetina venom was irradiated with two doses of gamma rays (1 and 2 kGy) from a 60Co source, and the venom's toxic, enzymatic, and structural properties were analyzed. Intraperitoneal injection of the irradiated venoms (100-500 microg/20 g mouse body mass) revealed a significant decrease of the toxicity. Irradiated venoms with 1 and 2 kGy doses were four and nine times less toxic, respectively, than the native venom. A biochemical characterization of in vitro enzymatic activities was performed. Vipera lebetina displayed in vitro caseinolytic, amidolytic, esterasic, coagulant, and phospholipase A2 activities. Caseinolytic, amidolytic, esterasic, and coagulative activities were reduced for the irradiated venoms; only phospholipase A2 activity was abolished in the irradiated venom with a dose of 2 kGy. The native and irradiated venoms were separated by gel filtration and electrophoresis. Chromatographic and electrophoretic profiles were drastically changed as compared with the native venom. Vipera lebetina venom detoxified by gamma rays was used for active immunization, and the presence of antibody in the immune sera was detected by ELISA. The immunogenic properties were preserved and the antisera obtained with the irradiated venoms could cross-react. Antisera were able to neutralize the toxic effect of V. lebetina native venom. These results indicate that irradiation of V. lebetina venom with a dose of 2 kGy can promote a significant detoxification, keeping the immunological properties intact.  相似文献   

5.
Human amniotic membrane that has been processed and sterilised by gamma irradiation is widely used as a biological dressing in surgical applications. The morphological structure of human amniotic membrane was studied under scanning electron microscopy (SEM) to assess effects of gamma radiation on human amniotic membrane following different preservation methods. The amniotic membrane was preserved by either air drying or submerged in glycerol before gamma irradiated at 15, 25 and 35 kGy. Fresh human amniotic membrane, neither preserved nor irradiated was used as the control. The surface morphology of glycerol preserved amnion was found comparable to the fresh amniotic membrane. The cells of the glycerol preserved was beautifully arranged, homogonous in size and tended to round up. The cell structure in the air dried preserved amnion seemed to be flattened and dehydrated. The effects of dehydration on intercellular channels and the microvilli on the cell surface were clearly seen at higher magnifications (10,000×). SEM revealed that the changes of the cell morphology of the glycerol preserved amnion were visible at 35 kGy while the air dried already changed at 25 kGy. Glycerol preservation method is recommended for human amniotic membrane as the cell morphological structure is maintained and radiation doses lower than 25 kGy for sterilization did not affect the appearance of the preserved amnion.  相似文献   

6.
Investigation of the dynamic behavior of irradiated kappa carrageenan (in KCl) as a function of irradiation dose and temperature was done by dynamic light scattering (DLS). The intensity correlation function (ICF) shifted towards shorter relaxation times with increasing radiation dose as a result of radiolysis. The characteristic decay time distribution function, G(gamma), indicates the presence of fast and slow mode peaks respectively at around 0.1-10 ms and 100-1000 ms. A peak broadening of the fast mode peak in G(gamma) appeared with decreasing temperature, indicating that coil-to-helical conformational transition took place. The conformation transition temperature (CTT) decreased with increasing radiation dose. No transition was observed for kappa-carrageenan irradiated at 200 kGy. A new faster relaxation mode appeared at around 0.1-1 ms at temperatures below the CTT. This peak is found in kappa-carrageenan irradiated at doses exclusively between 75 and 175 kGy. The peak height of this mode is largest at 100 kGy which corresponds to the optimum biologic activity of kappa-carrageenan reported previously.  相似文献   

7.
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.  相似文献   

8.
An investigation was made of the radiosensitivity of the toxic and immunological properties of Androctonus australis hector venom. This venom was irradiated with two doses of gamma rays (1 and 2 kGy) from a 60Co source. The results showed that venom toxicity was abolished for the two radiation doses (1 and 2 kGy) with, respectively, 10 and 25 times its initial LD50 value. However, irradiated venoms were immunogenic, and the antibodies elicited by them were able to recognize the native venom by enzyme-linked immunosorbent assay. Antisera raised against these toxoids (1 and 2 kGy) had a higher neutralizing capacity and immunoreactivity against all components of native venom than did the antiserum produced against the native venom. The antiserum of rabbits immunized with 2-kGy-irradiated venom was more efficient than 1-kGy-irradiated toxoid antiserum. Indeed, in vivo protection assays showed that the mice immunized with 2-kGy-irradiated venom resisted lethal doses (i.p.) of A. australis hector venom.  相似文献   

9.
Salmonella enterica forms biofilms that are relatively resistant to chemical sanitizing treatments. Ionizing radiation has been used to inactivate Salmonella on a variety of foods and contact surfaces, but the relative efficacy of the process against biofilm-associated cells versus free-living planktonic cells is not well documented. The radiation sensitivity of planktonic or biofilm-associated cells was determined for three food-borne-illness-associated isolates of Salmonella. Biofilms were formed on sterile glass slides in a coincubation apparatus, using inoculated tryptic soy broth, incubated at 37 degrees C for 48 h. Resulting biofilms were 18 to 24 microm in height as determined by confocal scanning laser microscopy. The planktonic and biofilm cultures were gamma irradiated to doses of 0.0 (control), 0.5, 1.0, 1.5, 2.0 and 2.5 kGy. The D(10) value (the dose of radiation required to reduce a population by 1 log(10), or 90%) was calculated for each isolate-culture based on surviving populations at each radiation dose. The D(10) values of S. enterica serovar Anatum were not significantly (P < 0.05) different for biofilm-associated (0.645 kGy) and planktonic (0.677 kGy) cells. In contrast, the biofilm-associated cells of S. enterica serovar Stanley were significantly more sensitive to ionizing radiation than the respective planktonic cells, with D(10) values of 0.531 and 0.591 kGy, respectively. D(10) values of S. enterica serovar Enteritidis were similarly reduced for biofilm-associated (0.436 kGy) versus planktonic (0.535 kGy) cells. The antimicrobial efficacy of ionizing radiation is therefore preserved or enhanced in treatment of biofilm-associated bacteria.  相似文献   

10.
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery. Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis. Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities. This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.  相似文献   

11.
Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.  相似文献   

12.
Lipopolysaccharide of Salmonella typhimurium was irradiated with gamma radiation at 10, 15, and 30 kGy doses. A dose of 30 kGy significantly detoxified the LPS (180 times). Mice were injected intraperitoneally with the radiodetoxified LPS, and it was found that it stimulated peritoneal macrophages as was evident from the enhancement of their acid hydrolases and cellular RNA content. Both LPS and radiodetoxified LPS exhibited antitumor activity against S180 cells in Swiss mice. Treatment with 20 micrograms/mouse of either LPS or 30 kGy LPS gave maximum survival of the mice (90%). These mice were found to resist the challenge of S180 cells (1 X 10(6)).  相似文献   

13.
Spices such as coriander, cumin, turmeric, chilli collected from a local market were found to be highly contaminated with bacteria and fungi. A dose of 10 kGy was required to reduce the total bacterial count below detectable levels, while a dose of only 5 kGy was required to eliminate the fungal contamination. Coliforms were totally eliminated at a radiation dose of 5 kGy. During a 6 months storage of irradiated and unirradiated spices, the irradiated spices were found to retain good microbiological quality.  相似文献   

14.
Tissue banks around the world store human cartilage obtained from cadaveric donors for use in diverse reconstructive surgical procedures. To ensure this tissue is sterile at the time of distribution, tissues may be sterilized by ionizing radiation. In this work, we evaluate the physical changes in deep frozen costal cartilage (?70 °C) or costal cartilage preserved in high concentrations of glycerol (>98 %) followed by a terminal sterilization process using ionizing radiation, at 3 different doses (15, 25 and 50 kGy). Tension and compression tests were carried out to determine the mechanical changes related both to the different preservation methods and irradiation doses. For both methods of preservation, tension strength was increased by about 24 %, when cartilage tissue was irradiated with 15 kGy. Deep frozen samples, when irradiated with 25 or 50 kGy, had a decrease in their mechanical performance, albeit to a lesser extent than when tissues were preserved in high concentration of glycerol and equally irradiated. In conclusion, processing in high concentration of glycerol did not increase tissue protection against radiation damage; while cartilage preserved in high concentrations of glycerol withstands radiation up to 25 kGy, deep frozen human costal cartilage may be sterilized with a doses up to 50 kGy without significant mechanical impact.  相似文献   

15.
Inactivation of Coxiella burnetii by gamma irradiation   总被引:4,自引:0,他引:4  
The gamma radiation inactivation kinetics for Coxiella burnetii at -79 degrees C were exponential. The radiation dose needed to reduce the number of infective C. burnetii by 90% varied from 0.64 to 1.2 kGy depending on the phase of the micro-organism, purity of the culture and composition of suspending menstruum. The viability of preparations containing 10(11) C. burnetii ml-1 was completely abolished by 10 kGy without diminishing antigenicity or ability to elicit a protective immune response in vaccinated mice. Immunocytochemical examinations using monoclonal antibodies and electron microscopy demonstrated that radiation doses of 20 kGy did not alter cell-wall morphology or cell-surface antigenic epitopes.  相似文献   

16.
The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var. alutaceus were determined after irradiation with 60Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log10 reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28 degrees C and at a moisture content of 25% produced less ochratoxin A with increasing doses of radiation. Inoculation of barley following irradiation resulted in enhanced ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10(2) spores per g produced greater radiation-induced enhancement than inoculation with 10(5) spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.  相似文献   

17.
The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var. alutaceus were determined after irradiation with 60Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log10 reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28 degrees C and at a moisture content of 25% produced less ochratoxin A with increasing doses of radiation. Inoculation of barley following irradiation resulted in enhanced ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10(2) spores per g produced greater radiation-induced enhancement than inoculation with 10(5) spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.  相似文献   

18.
The aim of the presented study was determined the effectiveness of action the gamma radiation on water suspension B. anthracis spores. The irradiation was performed using a Cobalt 60 (Co 60) source, by using single and fractionary irradiation doses. In the investigations was used B. anthracis stain "Sterne" 34F2. The obtained results show, that gamma radiation effectively inactivates B. anthracis spores. On the efficiency of sterilization process influence the irradiation's method and the number of spores in 1 ml suspension. In the suspension 1.5 x 10(9) spore in 1 ml, sporicidal doses gamma radiation amount to 25.0 kGy (single dose) or 41.5 kGy (fractionary dose). The volume suspension about definite inoculum of spores, subjected working the gamma rays has not influence on sporicidal effectiveness of radiation sterilization.  相似文献   

19.
DNA damage induced with ionizing radiation is considered one of the main causes of cell inactivation. Several methods including gel electrophoresis, pulsed-field gel electrophoresis, neutral filter elution method, neutral sedimentation and electron microscopy have been applied to analyze this type of DNA damage. A new method employing an atomic force microscope (AFM) for nanometer-level-structure analysis of DNA damage induced with gamma-irradiation is introduced in this report. Structural changes of plasmid DNA on a molecular size scale of about 3 kbp were visually analyzed by AFM after irradiation with 60Co gamma-rays at doses of 1.9, 5.6, and 8.3 kGy. Three forms of plasmid DNA, closed circular (intact DNA), open circular (DNA with a single strand break) and linear form (DNA with a double strand break) were visualized by dynamic force mode AFM after gamma-irradiation. The torsional feature of the plasmid DNA was visualized better with AFM than with a transmission electron microscope (TEM). All three forms of plasmid DNA were observed in the sample irradiated with gamma-rays at the dose of 1.9 kGy. Open circular and linear forms were observed in the samples irradiated with gamma-rays at doses of 5.6 and 8.3 kGy, though no closed circular form was observed. A shortening of the length of a linear form of DNA irradiated with 5.6 and 8.3 kGy gamma-rays was observed by AFM. Structural changes of DNA after gamma-irradiation were visualized by AFM at nanometer level resolution. In addition, shortening of the length of the linear form of DNA after radiation exposure was observed by AFM.  相似文献   

20.
The effects of cobalt-60 gamma-rays, 10 MeV electrons and 52 MeV deutrons on the survival of plaque-forming ability has been studied in various strains of herpes simplex virus (HSV). The results show that the D0 for the loss of plaque-forming ability in different HSV strains lies in the range 1-3 kGy. Irradiation of isolated HSV-1 DNA with cobalt-60 gamma-rays resulted in damage, as indicated by electrophoresis of purified viral DNA and by restriction endonuclease analysis, at doses of 1 kGy, with complete loss of structure at doses above 4 kGy. The infectivity of the irradiated naked DNA was lost at doses above 4 kGy, but after irradiation of the intact virus some plaque-forming ability was retained after doses of 10 or even 40 kGy. Thus the organization within the viral capsid may play a protective role by modifying the severity of the radiation damage, and preserving at least some degree of infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号