首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G C S Kuhn 《Heredity》2015,115(1):1-2
Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species.  相似文献   

2.
High-throughput DNA sequencing (HTS) is of increasing importance in the life sciences. One of its most prominent applications is the sequencing of whole genomes or targeted regions of the genome such as all exonic regions (i.e., the exome). Here, the objective is the identification of genetic variants such as single nucleotide polymorphisms (SNPs). The extraction of SNPs from the raw genetic sequences involves many processing steps and the application of a diverse set of tools. We review the essential building blocks for a pipeline that calls SNPs from raw HTS data. The pipeline includes quality control, mapping of short reads to the reference genome, visualization and post-processing of the alignment including base quality recalibration. The final steps of the pipeline include the SNP calling procedure along with filtering of SNP candidates. The steps of this pipeline are accompanied by an analysis of a publicly available whole-exome sequencing dataset. To this end, we employ several alignment programs and SNP calling routines for highlighting the fact that the choice of the tools significantly affects the final results.  相似文献   

3.
水稻单核苷酸多态性及其应用现状   总被引:6,自引:0,他引:6  
刘传光  张桂权 《遗传》2006,28(6):737-744
单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,遗传稳定性高。水稻SNPs的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs和从基因组序列直接搜索等。目前已有多种基因分型技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便。单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力。  相似文献   

4.
单核苷酸多态性(SNPs)是人类基因组中最常见的变异形式。作为第三代遗传标记,SNP在基因定位、克隆、遗传多态性方面具有广泛应用,特别是作为基因诊断标记在预防医学中具有十分重要的作用。近年来,随着人类基因组计划的发展,数以百万计的SNP被陆续发现,并可在公共数据库中免费获得。SNP数量的快速增加和SNP检测方法的发展,为其在肿瘤易感性领城的应用提供了可能。在本综述中,我们介绍了几种高通量检测SNP的分析方法,总结了大规模SNP分析技术在肿瘤易感性中的应用,介绍了目前人们对于不同人群中的SNP分析、肿瘤易感基因、个体肿瘤易感性的理解,以及研究SNP标记与肿瘤易感性关系时存在的难点。  相似文献   

5.
Single nucleotide polymorphisms (SNPs) have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution) for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes) and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.  相似文献   

6.
High-throughput sequencing opens avenues to find genetic variations that may be indicative of an increased risk for certain diseases. Linking these genomic data to other "omics" approaches bears the potential to deepen our understanding of pathogenic processes at the molecular level. To detect novel single nucleotide polymorphisms (SNPs) for glioblastoma multiforme (GBM), we used a combination of specific target selection and next generation sequencing (NGS). We generated a microarray covering the exonic regions of 132 GBM associated genes to enrich target sequences in two GBM tissues and corresponding leukocytes of the patients. Enriched target genes were sequenced with Illumina and the resulting reads were mapped to the human genome. With this approach we identified over 6000 SNPs, including over 1300 SNPs located in the targeted genes. Integrating the genome-wide association study (GWAS) catalog and known disease associated SNPs, we found that several of the detected SNPs were previously associated with smoking behavior, body mass index, breast cancer and high-grade glioma. Particularly, the breast cancer associated allele of rs660118 SNP in the gene SART1 showed a near doubled frequency in glioblastoma patients, as verified in an independent control cohort by Sanger sequencing. In addition, we identified SNPs in 20 of 21 GBM associated antigens providing further evidence that genetic variations are significantly associated with the immunogenicity of antigens.  相似文献   

7.
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.  相似文献   

8.
Association mapping currently relies on the identification of genetic markers. Several technologies have been adopted for genetic marker analysis, with single nucleotide polymorphisms (SNPs) being the most popular where a reasonable quantity of genome sequence data are available. We describe several tools we have developed for the discovery, annotation, and visualization of molecular markers for association mapping. These include autoSNPdb for SNP discovery from assembled sequence data; TAGdb for the identification of gene specific paired read Illumina GAII data; CMap3D for the comparison of mapped genetic and physical markers; and BAC and Gene Annotator for the online annotation of genes and genomic sequences.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep‐sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize ‘bycatch’—polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand‐bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single‐copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms.  相似文献   

10.
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.  相似文献   

11.
Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations amongst species. With the genome‐wide SNP discovery, many genome‐wide association studies are likely to identify multiple genetic variants that are associated with complex diseases. However, genotyping all existing SNPs for a large number of samples is still challenging even though SNP arrays have been developed to facilitate the task. Therefore, it is essential to select only informative SNPs representing the original SNP distributions in the genome (tag SNP selection) for genome‐wide association studies. These SNPs are usually chosen from haplotypes and called haplotype tag SNPs (htSNPs). Accordingly, the scale and cost of genotyping are expected to be largely reduced. We introduce binary particle swarm optimization (BPSO) with local search capability to improve the prediction accuracy of STAMPA. The proposed method does not rely on block partitioning of the genomic region, and consistently identified tag SNPs with higher prediction accuracy than either STAMPA or SVM/STSA. We compared the prediction accuracy and time complexity of BPSO to STAMPA and an SVM‐based (SVM/STSA) method using publicly available data sets. For STAMPA and SVM/STSA, BPSO effective improved prediction accuracy for smaller and larger scale data sets. These results demonstrate that the BPSO method selects tag SNP with higher accuracy no matter the scale of data sets is used. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Oilseed rape (Brassica napus) is an allotetraploid species consisting of two genomes, derived from B. rapa (A genome) and B. oleracea (C genome). The presence of these two genomes makes single nucleotide polymorphism (SNP) marker identification and SNP analysis more challenging than in diploid species, as for a given locus usually two versions of a DNA sequence (based on the two ancestral genomes) have to be analyzed simultaneously during SNP identification and analysis. One hundred amplicons derived from expressed sequence tag (ESTs) were analyzed to identify SNPs in a panel of oilseed rape varieties and within two sister species representing the ancestral genomes. A total of 604 SNPs were identified, averaging one SNP in every 42 bp. It was possible to clearly discriminate SNPs that are polymorphic between different plant varieties from SNPs differentiating the two ancestral genomes. To validate the identified SNPs for their use in genetic analysis, we have developed Illumina GoldenGate assays for some of the identified SNPs. Through the analysis of a number of oilseed rape varieties and mapping populations with GoldenGate assays, we were able to identify a number of different segregation patterns in allotetraploid oilseed rape. The majority of the identified SNP markers can be readily used for genetic mapping, showing that amplicon sequencing and Illumina GoldenGate assays can be used to reliably identify SNP markers in tetraploid oilseed rape and to convert them into successful SNP assays that can be used for genetic analysis.  相似文献   

13.
SUMMARY: Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variations in closely related microbial species, strains or isolates. Some SNPs confer selective advantages for microbial pathogens during infection and many others are powerful genetic markers for distinguishing closely related strains or isolates that could not be distinguished otherwise. To facilitate SNP discovery in microbial genomes, we have developed a web-based application, SNPsFinder, for genome-wide identification of SNPs. SNPsFinder takes multiple genome sequences as input to identify SNPs within homologous regions. It can also take contig sequences and sequence quality scores from ongoing sequencing projects for SNP prediction. SNPsFinder will use genome sequence annotation if available and map the predicted SNP regions to known genes or regions to assist further evaluation of the predicted SNPs for their functional significance. SNPsFinder can generate PCR primers for all predicted SNP regions according to user's input parameters to facilitate experimental validation. The results from SNPsFinder analysis are accessible through the World Wide Web. AVAILABILITY: The SNPsFinder program is available at http://snpsfinder.lanl.gov/. SUPPLEMENTARY INFORMATION: The user's manual is available at http://snpsfinder.lanl.gov/UsersManual/  相似文献   

14.
MOTIVATION: Single nucleic polymorphisms (SNPs) are one of the most abundant genetic variations in the human genome. Recently, several platforms for high-throughput SNP analysis have become available, capable of measuring thousands of SNPs across the genome. Tools for analysing and visualizing these large genetic data sets in biologically relevant manner are rare. This hinders effective use of the SNP-array data in research on complex diseases, such as cancer. RESULTS: We describe a computational framework to analyse and visualize SNP-array data, and link the results in relevant databases. Our major objective is to develop methods for identifying DNA regions that likely harbour recessive mutations. Thus, the algorithms are designed to have high sensitivity and the identified regions are ranked using a scoring algorithm. We have also developed annotation tools that automatically query gene IDs, exon counts, microarray probe IDs, etc. In our case study, we apply the methods for identifying candidate regions for recessively inherited colorectal cancer predisposition and suggest directions for wet-lab experiments. AVAILABILITY: R-package implementation is available at http://www.ltdk.helsinki.fi/sysbio/csb/downloads/CohortComparator/  相似文献   

15.
16.
17.
A set of EST-SNPs for map saturation and cultivar identification in melon   总被引:2,自引:0,他引:2  

Background

There are few genomic tools available in melon (Cucumis melo L.), a member of the Cucurbitaceae, despite its importance as a crop. Among these tools, genetic maps have been constructed mainly using marker types such as simple sequence repeats (SSR), restriction fragment length polymorphisms (RFLP) and amplified fragment length polymorphisms (AFLP) in different mapping populations. There is a growing need for saturating the genetic map with single nucleotide polymorphisms (SNP), more amenable for high throughput analysis, especially if these markers are located in gene coding regions, to provide functional markers. Expressed sequence tags (ESTs) from melon are available in public databases, and resequencing ESTs or validating SNPs detected in silico are excellent ways to discover SNPs.

Results

EST-based SNPs were discovered after resequencing ESTs between the parental lines of the PI 161375 (SC) × 'Piel de sapo' (PS) genetic map or using in silico SNP information from EST databases. In total 200 EST-based SNPs were mapped in the melon genetic map using a bin-mapping strategy, increasing the map density to 2.35 cM/marker. A subset of 45 SNPs was used to study variation in a panel of 48 melon accessions covering a wide range of the genetic diversity of the species. SNP analysis correctly reflected the genetic relationships compared with other marker systems, being able to distinguish all the accessions and cultivars.

Conclusion

This is the first example of a genetic map in a cucurbit species that includes a major set of SNP markers discovered using ESTs. The PI 161375 × 'Piel de sapo' melon genetic map has around 700 markers, of which more than 500 are gene-based markers (SNP, RFLP and SSR). This genetic map will be a central tool for the construction of the melon physical map, the step prior to sequencing the complete genome. Using the set of SNP markers, it was possible to define the genetic relationships within a collection of forty-eight melon accessions as efficiently as with SSR markers, and these markers may also be useful for cultivar identification in Occidental melon varieties.  相似文献   

18.
MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data in public repositories makes it feasible to evaluate SNP predictions on the DNA chromatogram level. MAVIANT, a platform-independent Multipurpose Alignment VIewing and Annotation Tool, provides DNA chromatogram and alignment views and facilitates evaluation of predictions. In addition, it supports direct manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non-synonymous SNPs were analyzed for their potential effect on the protein structure/function using the PolyPhen and SIFT prediction programs. Predicted SNPs and annotations are stored in a web-based database. Using MAVIANT SNPs can visually be verified based on the DNA sequencing traces. A subset of candidate SNPs was selected for experimental validation by resequencing and genotyping. This study provides a web-based DNA chromatogram and contig browser that facilitates the evaluation and selection of candidate SNPs, which can be applied as genetic markers for genome wide genetic studies. AVAILABILITY: The stand-alone version of MAVIANT program for local use is freely available under GPL license terms at http://snp.agrsci.dk/maviant. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
Molecular breeding approaches are of growing importance to crop improvement. However, closely related cultivars generally used for crossing material lack sufficient known DNA polymorphisms due to their genetic relatedness. Next-generation sequencing allows the identification of a massive number of DNA polymorphisms such as single nucleotide polymorphisms (SNPs) and insertions-deletions (InDels) between highly homologous genomes. Using this technology, we performed whole-genome sequencing of a landrace of japonica rice, Omachi, which is used for sake brewing and is an important source for modern cultivars. A total of 229 million reads, each comprising 75 nucleotides of the Omachi genome, was generated with 45-fold coverage and uniquely mapped to 89.7% of the Nipponbare genome, a closely related cultivar. We identified 132,462 SNPs, 16,448 insertions and 19,318 deletions between the Omachi and Nipponbare genomes. An SNP array was designed to validate 731 selected SNPs, resulting in validation rates of 95 and 88% for the Omachi and Nipponbare genomes, respectively. Among the 577 SNPs validated in both genomes, 532 are entirely new SNP markers not previously reported between related rice cultivars. We also validated InDels on a part of chromosome 2 as DNA markers and successfully genotyped five japonica rice cultivars. Our results present the methodology and extensive data on SNPs and InDels available for whole-genome genotyping and marker-assisted breeding. The polymorphism information between Omachi and Nipponbare is available at NGRC_Rice_Omachi (http://www.nodai-genome.org/oryza_sativa_en.html).  相似文献   

20.
Single nucleotide polymorphisms (SNPs) are believed to contain relevant information and have been therefore extensively used as genetic markers in population and conservation genetics, and molecular ecology studies. This study reports on the identification of potential SNPs in a diploid European sea bass Dicentrarchus labrax genome by using reference sequences from three assembled chromosomes and mapping all WGS datasets onto them (3× Sanger, 3× 454 and 20× SOLEXA). A total of 20,779 SNPs were identified over the 1469 gene loci and intergenic space analysed. Within chromosomes the occurrence of SNPs was the lowest in exons and higher in introns and intergenic regions, which may be explained by the fact, that coding regions are under strong selective pressure to maintain their biological function. The ratio of nonsynonymous to synonymous mutations was smaller than one for all the chromosomes, suggesting that most of deleterious nonsynonymous mutations were eliminated by negative selection. SNPs were not uniformly distributed over the chromosomes. Two chromosomes exhibited large regions with extremely low SNP density, which might represent homozygous regions in the diploid genome. The results of this study show how SNP detection can take profit from sequencing a single diploid individual, but also uncover the limits of such an approach. SNPs that have been identified will support marker development for genetic linkage mapping, population genetics and aquaculture related questions in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号