首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
One of the hallmarks of Alzheimer's disease is extracellular accumulation of senile plaques composed primarily of aggregated beta-amyloid (Abeta) peptide. Treatment of cultured neurons with Abeta peptide induces neuronal death in which apoptosis is suggested to be one of the mechanisms. We have demonstrated previously that Abeta peptide induces activation of double-stranded RNA-dependent serine/threonine protein kinase (PKR) and phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) in neurons in vitro. Degenerating neurons in brain tissues from Alzheimer's disease patients also displayed high immunoreactivity for phosphorylated PKR and eIF2alpha. Our previous data have also indicated that PKR plays a significant role in mediating Abeta peptide-induced neuronal death, because neurons from PKR knockout mice and neuroblastoma SH-SY5Y cells stably transfected with dominant negative mutant of PKR are less susceptible to Abeta peptide toxicity. Therefore, it is important to understand how PKR is activated by Abeta peptide. We report here that inhibition of caspase-3 activity reduces phosphorylation of PKR and to a certain extent, cleavage of PKR and eIF2alpha in neurons exposed to Abeta peptide. Calcium release from the endoplasmic reticulum and activation of caspase-8 are the upstream signals modulating the caspase-3-mediated activation of PKR by Abeta peptide. Although in other systems HSP90 serves as a repressor for PKR, it is unlikely the candidate for caspase-3 to affect PKR activation in neurons after Abeta peptide exposure. Elucidation of the upstream pathways for PKR activation can help us to understand how this kinase participates in Abeta peptide neurotoxicity and to develop effective neuroprotective strategy.  相似文献   

4.
The unfolded protein response (UPR) counteracts stress caused by unprocessed ER client proteins. A genome-wide survey showed impaired induction of many UPR target genes in xbp-1 mutant Caenorhabditis elegans that are unable to signal in the highly conserved IRE1-dependent UPR pathway. However a family of genes, abu (activated in blocked UPR), was induced to higher levels in ER-stressed xbp-1 mutant animals than in ER-stressed wild-type animals. RNA-mediated interference (RNAi) inactivation of a representative abu family member, abu-1 (AC3.3), activated the ER stress marker hsp-4::gfp in otherwise normal animals and killed 50% of ER-stressed ire-1 and xbp-1 mutant animals. Abu-1(RNAi) also enhanced the effect of inactivation of sel-1, an ER-associated protein degradation gene. The nine abu genes encode highly related type I transmembrane proteins whose lumenal domains have sequence similarity to a mammalian cell surface scavenger receptor of endothelial cells that binds chemically modified extracellular proteins and directs their lysosomal degradation. Our findings that ABU-1 is an intracellular protein located within the endomembrane system that is induced by ER stress in xbp-1 mutant animals suggest that ABU proteins may interact with abnormal ER client proteins and this function may be particularly important in animals with an impaired UPR.  相似文献   

5.
In the brains of Alzheimer's disease (AD) patients, fibrillar amyloid-beta peptides (Abeta) are markedly accumulated and the microglia associate with the amyloid plaques. However, the regulation of Abeta clearance is still unclear. In the present study, we examined the effect of a chaperone protein BiP/GRP78 on the microglial function. Exogenous addition of recombinant BiP/GRP78 induced the production of cytokines such as interleukin-6 and tumor necrosis factor-alpha, but heat treatment of this protein abolished the activity. Although Abeta(1-42) did not induce cytokine production, it was taken up by the microglia. In addition, the amount of Abeta(1-42) uptake and the number of microglia that phagocytosed Abeta(1-42) were markedly increased by BiP/GRP78. Exogenous BiP/GRP78 also translocated to the endoplasmic reticulum (ER). These results suggest that BiP/GRP78 stimulates Abeta clearance in the microglia, and that dysfunction in the ER may cause the accumulation of extracellular Abeta(1-42).  相似文献   

6.
7.
The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR). In certain cells, the free fatty acid palmitate has been shown to induce the UPR. Here, we examined the effects of palmitate on UPR gene expression in a human neuronal cell line and compared it with thapsigargin, a known depletor of ER calcium and trigger of the UPR. We used a Gaussia luciferase-based reporter to assess how palmitate treatment affects ER proteostasis and calcium homeostasis in the cells. We also investigated how ER calcium depletion by thapsigargin affects lipid membrane composition by performing mass spectrometry on subcellular fractions and compared this to palmitate. Surprisingly, palmitate treatment did not activate UPR despite prominent changes to membrane phospholipids. Conversely, thapsigargin induced a strong UPR, but did not significantly change the membrane lipid composition in subcellular fractions. In summary, our data demonstrate that changes in membrane lipid composition and disturbances in ER calcium homeostasis have a minimal influence on each other in neuronal cells. These data provide new insight into the adaptive interplay of lipid homeostasis and proteostasis in the cell.  相似文献   

8.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER overload, resulting in ER stress. To cope with ER stress, mammalian cells trigger a specific response known as the unfolded protein response (UPR). Although recent studies have indicated cross-talk between ER stress and oxidative stress, the mechanistic link is not fully understood. By using murine fibrosarcoma L929 cells, in which tumor necrosis factor (TNF) alpha induces accumulation of reactive oxygen species (ROS) and cell death, we show that TNFalpha induces the UPR in a ROS-dependent fashion. In contrast to TNFalpha, oxidative stresses by H2O2 or arsenite only induce eukaroytic initiation factor 2alpha phosphorylation, but not activation of PERK- or IRE1-dependent pathways, indicating the specificity of downstream signaling induced by various oxidative stresses. Conversely, the UPR induced by tunicamycin substantially suppresses TNFalpha-induced ROS accumulation and cell death by inhibiting reduction of cellular glutathione levels. Collectively, some, but not all, oxidative stresses induce the UPR, and pre-emptive UPR counteracts TNFalpha-induced ROS accumulation.  相似文献   

9.
Endoplasmic reticulum (ER)-induced apoptosis and oxidative stress contribute to several chronic disease processes, yet molecular and cellular mechanisms linking ER stress and oxidative stress in the setting of apoptosis are poorly understood and infrequently explored in vivo. In this paper, we focus on a previously elucidated ER stress-apoptosis pathway whose molecular components have been identified and documented to cause apoptosis in vivo. We now show that nicotinamide adenine dinucleotide phosphate reduced oxidase (NOX) and NOX-mediated oxidative stress are induced by this pathway and that apoptosis is blocked by both genetic deletion of the NOX subunit NOX2 and by the antioxidant N-acetylcysteine. Unexpectedly, NOX and oxidative stress further amplify CCAAT/enhancer binding protein homologous protein (CHOP) induction through activation of the double-stranded RNA-dependent protein kinase (PKR). In vivo, NOX2 deficiency protects ER-stressed mice from renal cell CHOP induction and apoptosis and prevents renal dysfunction. These data provide new insight into how ER stress, oxidative stress, and PKR activation can be integrated to induce apoptosis in a pathophysiologically relevant manner.  相似文献   

10.
Beta-amyloid (Abeta) peptide has been suggested to play important roles in the pathogenesis of Alzheimer's disease (AD). Abeta peptide neurotoxicity was shown to induce disturbance of cellular calcium homeostasis. However, whether modulation of calcium release from the endoplasmic reticulum (ER) can protect neurons from Abeta toxicity is not clearly defined. In the present study, Abeta peptide-triggered ER calcium release in primary cortical neurons in culture is modulated by Xestospongin C, 2-aminoethoxydiphenyl borate or FK506. Our results showed that reduction of ER calcium release can partially attenuate Abeta peptide neurotoxicity evaluated by LDH release, caspase-3 activity and quantification of apoptotic cells. While stress signals associated with perturbations of ER functions such as up-regulation of GRP78 was significantly attenuated, other signaling machinery such as activation of caspase-7 transmitting death signals from ER to other organelles could not be altered. We further provide evidence that molecular signaling in mitochondria play also a significant role in determining neuronal apoptosis because Abeta peptide-triggered activation of caspase-9 was not significantly reduced by attenuating ER calcium release. Our results suggest that neuroprotective strategies aiming at reducing Abeta toxicity should include molecular targets linked to ER perturbations associated with ER calcium release as well as mitochondrial stress.  相似文献   

11.
12.
Extracellular amyloid beta peptides (Abetas) have long been thought to be a primary cause of Alzheimer's disease (AD). Now, detection of intracellular neuronal Abeta1--42 accumulation before extracellular Abeta deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Abeta is toxic to human neurons. Microinjections of Abeta1--42 peptide or a cDNA-expressing cytosolic Abeta1--42 rapidly induces cell death of primary human neurons. In contrast, Abeta1--40, Abeta40--1, or Abeta42--1 peptides, and cDNAs expressing cytosolic Abeta1--40 or secreted Abeta1--42 and Abeta1--40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Abeta1--42 peptides is neurotoxic. The nonfibrillized and fibrillized Abeta1--42 peptides are equally toxic. In contrast, Abeta1--42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Abeta1--42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Abeta1--42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Abeta1--42 is selectively cytotoxic to human neurons through the p53--Bax cell death pathway.  相似文献   

13.
14.
ABSTRACT: BACKGROUND: The amyloid-beta peptide (Abeta42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Abeta42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. RESULTS: Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Abeta42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. CONCLUSIONS: Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.  相似文献   

15.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

16.
The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.  相似文献   

17.
Stress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress. In the present study, we evaluated the effects of perturbations to lipid homeostasis on ER stress/UPR induction in the model eukaryote Saccharomyces cerevisiae . We show that SFA originating from either endogenous (preclusion of fatty acid desaturation) or exogenous (feeding with extracellular SFA) sources trigger ER stress and that ergosterol, the major sterol in yeast, acts synergistically with SFA in this process. This latter effect is connected to ergosterol accumulation within microsomal fractions from SFA-accumulating cells, which display highly saturated phospholipid content. Moreover, treating the cells with the molecular chaperone 4-phenyl butyrate abolishes UPR induction, suggesting that lipid-induced ER stress leads to an overload of misfolded protein that acts, in turn, as the molecular signal for induction of the UPR. The present data are discussed in the context of human diseases that involve lipid deregulation.  相似文献   

18.
Abeta peptide is the major component of senile plaques (SP), which accumulate in the brain of a patient with Alzheimer's disease (AD). A recent report indicated that isoflurane enhanced Abeta oligomerization (micro-aggregation) and subsequent cytotoxicity of the Abeta peptide. A separate study showed that a clinically relevant concentration of isoflurane induces apoptosis and increases Abeta production in a human neuroglioma cell line. In vitro studies have indicated that halothane interacts specifically with Abeta peptide to induce oligomerization and that Abeta42 oligomerizes faster than Abeta40. The specific interactions of isoflurane, propofol, and thiopental with uniformly 15N labeled Abeta40 and Abeta42 peptide were investigated using multidimensional nuclear magnetic resonance (NMR) experiments. We found that isoflurane and propofol (at higher concentration) interact with Abeta40 peptides and induce Abeta oligomerization. Thiopental does not interact with specific residues (G29, A30, and I31) of Abeta40; hence, the peptide remains in the monomeric form. On the basis of our NMR study, thiopental does not oligomerize Abeta40 even at higher concentrations.  相似文献   

19.
Inhibition of protein translation plays an important role in apoptosis. While double-stranded RNA-dependent protein kinase (PKR) is named as it is activated by double-stranded RNA produced by virus, its activation induces an inhibition of protein translation and apoptosis via the phosphorylation of the eukaryotic initiation factor 2alpha (eIF2alpha). PKR is also a stress kinase and its levels increase during ageing. Here we show that PKR activation and eIF2alpha phosphorylation play a significant role in apoptosis of neuroblastoma cells and primary neuronal cultures induced by the beta-amyloid (Abeta) peptides, the calcium ionophore A23187 and flavonoids. The phosphorylation of eIF2alpha and the number of apoptotic cells were enhanced in over-expressed wild-type PKR neuroblastoma cells exposed to Abeta peptide, while dominant-negative PKR reduced eIF2alpha phosphorylation and apoptosis induced by Abeta peptide. Primary cultured neurons from PKR knockout mice were also less sensitive to Abeta peptide toxicity. Activation of PKR and eIF2alpha pathway by Abeta peptide are triggered by an increase in intracellular calcium because the intracellular calcium chelator BAPTA-AM significantly reduced PKR phosphorylation. Taken together, these results reveal that PKR and eIF2alpha phosphorylation could be involved in the molecular signalling events leading to neuronal apoptosis and death and could be a new target in neuroprotection.  相似文献   

20.
Zheng L  Marcusson J  Terman A 《Autophagy》2006,2(2):143-145
Intraneuronal accumulation of amyloid beta-protein (Abeta) is believed to be responsible for degeneration and apoptosis of neurons and consequent senile plaque formation in Alzheimer disease (AD), the main cause of senile dementia. Oxidative stress, an early determinant of AD, has been recently found to induce intralysosomal Abeta accumulation in cultured differentiated neuroblastoma cells through activation of macroautophagy. Because Abeta is known to destabilize lysosomal membranes, potentially resulting in apoptotic cell death, this finding suggests the involvement of oxidative stress-induced macroautophagy in the pathogenesis of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号