首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background  

The sea urchin embryo has been an important model organism in developmental biology for more than a century. This is due to its relatively simple construction, translucent appearance, and the possibility to follow the fate of individual cells as development to the pluteus larva proceeds. Because the larvae contain tiny calcitic skeletal elements, the spicules, they are also important model organisms for biomineralization research. Similar to other biominerals the spicule contains an organic matrix, which is thought to play an important role in its formation. However, only few spicule matrix proteins were identified previously.  相似文献   

3.

Background  

While studies of non-model organisms are critical for many research areas, such as evolution, development, and environmental biology, they present particular challenges for both experimental and computational genomic level research. Resources such as mass-produced microarrays and the computational tools linking these data to functional annotation at the system and pathway level are rarely available for non-model species. This type of "systems-level" analysis is critical to the understanding of patterns of gene expression that underlie biological processes.  相似文献   

4.

Background  

Nuclear insertions of mitochondrial sequences (NuMts) have been identified in a wide variety of organisms. Trafficking of genetic material from the mitochondria to the nucleus has occurred frequently during mammalian evolution and can lead to the production of a large pool of sequences with varying degrees of homology to organellar mitochondrial DNA (mtDNA) sequences. This presents both opportunities and challenges for forensics, population genetics, evolutionary genetics, conservation biology and the study of DNA from ancient samples. Here we present a case in which difficulties in ascertaining the organellar mtDNA sequence from modern samples hindered their comparison to ancient DNA sequences.  相似文献   

5.

Background  

Chromatin dynamics and stability are both required to control normal development of multicellular organisms. Chromatin assembly factor CAF-1 is a histone chaperone that facilitates chromatin formation and the maintenance of specific chromatin states. In plants and animals CAF-1 is essential for normal development, but it is poorly understood which developmental pathways require CAF-1 function.  相似文献   

6.

Background  

The embryonic and larval peripheral nervous system of Drosophila melanogaster is extensively studied as a very powerful model of developmental biology. One main advantage of this system is the ability to study the origin and development of individual sensory cells. However, there remain several discrepancies regarding the organization of sensory organs in each abdominal segment A1-A7.  相似文献   

7.

Background  

Twenty amino acids comprise the universal building blocks of proteins. However, their biosynthetic routes do not appear to be universal from an Escherichia coli-centric perspective. Nevertheless, it is necessary to understand their origin and evolution in a global context, that is, to include more 'model' species and alternative routes in order to do so. We use a comparative genomics approach to assess the origins and evolution of alternative amino acid biosynthetic network branches.  相似文献   

8.
9.

Background  

A growing number of laboratories are using the mouse as a model system in developmental biology as well as in molecular biology. Surprisingly, most of these laboratories do not have reliable computerized systems to track these animals, and the few commercial solutions available are expensive. We thus developed MICE (Mouse Information and Classification Entity), a program aimed at facilitating the monitoring of animals in animal facilities.  相似文献   

10.
Mosaic animals have provided the platform for many fundamental discoveries in developmental biology, cell biology, and other fields. Techniques to produce mosaic animals by mitotic recombination have been extensively developed in Drosophila melanogaster but are less common for other laboratory organisms. Here, we report mosaic analysis by gRNA-induced crossing-over (MAGIC), a new technique for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9. MAGIC efficiently produces mosaic clones in both somatic tissues and the germline of Drosophila. Further, by developing a MAGIC toolkit for 1 chromosome arm, we demonstrate the method’s application in characterizing gene function in neural development and in generating fluorescently marked clones in wild-derived Drosophila strains. Eliminating the need to introduce recombinase-recognition sites into the genome, this simple and versatile system simplifies mosaic analysis in Drosophila and can in principle be applied in any organism that is compatible with CRISPR/Cas9.

Analysis of mosaic animals has been crucial in developmental and cell biology; this study describes a versatile, simple, and likely widely-applicable technique, MAGIC (mosaic analysis by gRNA-induced crossing-over), for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9.  相似文献   

11.

Background  

Malignant peripheral nerve sheath tumors are rare tumor entities that originate from peripheral nerve sheaths and have an unfavorable prognosis. Metastatic spread to the cerebral parenchyma is absolutely rare. This case report describes the clinical course in a 60-year-old man whose tumor came to medical attention because of a seizure.  相似文献   

12.
Zyxin is a novel interacting partner for SIRT1   总被引:1,自引:0,他引:1  

Background  

SIRT1 is a mammalian homologue of NAD+-dependent deacetylase sirtuin family. It regulates longevity in several model organisms and is involved with cell survival, differentiation, metabolism among other processes in mammalian cells. SIRT1 modulates functions of various key targets via deacetylation. Recent studies have revealed SIRT1 protects neurons from axonal degeneration or neurodegeneration. Further, SIRT1 null mice exhibit growth retardation and developmental defects, suggesting its critical roles in neurons and development.  相似文献   

13.

Background  

In this report we re-examine some recent experiments with digital organisms to test some predictions of quasispecies theory. These experiments revealed that under high mutation rates populations of less fit organisms previously adapted to such high mutation rates were able to outcompete organisms with higher average fitness but adapted to low mutation rates.  相似文献   

14.
15.

Background  

Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms.  相似文献   

16.

Background  

Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish.  相似文献   

17.

Background  

Novel, uncharacterised proteins represent a challenge in biochemistry and molecular biology. In this report we present an initial functional characterization of human kidney predominant protein, NCU-G1.  相似文献   

18.

Background  

Post-translational protein modification with ubiquitin, or ubiquitylation, is one of the hottest topics in a modern biology due to a dramatic impact on diverse metabolic pathways and involvement in pathogenesis of severe human diseases. A great number of eukaryotic proteins was found to be ubiquitylated. However, data about particular ubiquitylated proteins are rather disembodied.  相似文献   

19.

Background  

MicroRNAs (miRNAs) are a class of short regulatory RNAs encoded in the genome of DNA viruses, some single cell organisms, plants and animals. With the rapid development of technology, more and more miRNAs are being discovered. However, the origin and evolution of most miRNAs remain obscure. Here we report the origin and evolution dynamics of a human miRNA family.  相似文献   

20.

Background  

One of the main objectives of the molecular evolution and evolutionary systems biology field is to reveal the underlying principles that dictate protein evolutionary rates. Several studies argue that expression abundance is the most critical component in determining the rate of evolution, especially in unicellular organisms. However, the expression breadth also needs to be considered for multicellular organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号