首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human transformations of the Wadden Sea ecosystem through time: a synthesis   总被引:3,自引:3,他引:0  
Todays Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the Wadden Sea. We then discuss the ecosystem and societal consequences of observed changes, and conclude with management implications. Human influences have intensified and multiplied over time. Large-scale habitat transformation over the last 1,000 years has eliminated diverse terrestrial, freshwater, brackish and marine habitats. Intensive exploitation of everything from oysters to whales has depleted most large predators and habitat-building species since medieval times. In the twentieth century, pollution, eutrophication, species invasions and, presumably, climate change have had marked impacts on the Wadden Sea flora and fauna. Yet habitat loss and overexploitation were the two main causes for the extinction or severe depletion of 144 species (~20% of total macrobiota). The loss of biodiversity, large predators, special habitats, filter and storage capacity, and degradation in water quality have led to a simplification and homogenisation of the food web structure and ecosystem functioning that has affected the Wadden Sea ecosystem and coastal societies alike. Recent conservation efforts have reversed some negative trends by enabling some birds and mammals to recover and by creating new economic options for society. The Wadden Sea history provides a unique long-term perspective on ecological change, new objectives for conservation, restoration and management, and an ecological baseline that allows us to envision a rich, productive and diverse Wadden Sea ecosystem and coastal society.  相似文献   

2.
Globalization under water: Alien species in the Wadden Sea World Heritage Recent investigations reveal an increasing number of non‐native species in the Wadden Sea which profit from warmer water temperatures caused by global change. These exotic species achieve highest occurrence and densities in shallow waters near the low tide water level. In this tidal zone, a highly diverse species community of algae and invertebrates became established and will continue to alter in composition. This leads to enhanced complexity of biogenic habitats and to a prevalence of filter feeding organisms. Thus, we observe a fundamental change of the whole Wadden Sea ecosystem which is without return.  相似文献   

3.
Substantial ecological changes occurred in the 1970s in the Northern Baltic during a temporary period of low salinity (S). This period was preceded by an episodic increase in the rainfall over the Baltic Sea watershed area. Several climate models, both global and regional, project an increase in the runoff of the Northern latitudes due to proceeding climate change. The aim of this study is to model, firstly, the effects on Baltic Sea salinity of increased runoff due to projected global change and, secondly, the effects of salinity change on the distribution of marine species. The results suggest a critical shift in the S range 5–7, which is a threshold for both freshwater and marine species distributions and diversity. We discuss several topics emphasizing future monitoring, modelling, and fisheries research. Environmental monitoring and modelling are investigated because the developing alternative ecosystems do not necessarily show the same relations to environment quality factors as the retiring ones. An important corollary is that the observed and modelled S changes considered together with species’ ranges indicate what may appear under a future climate. Consequences could include a shift in distribution areas of marine benthic foundation species and some 40–50 other species, affiliated to these. This change would extend over hundreds of kilometres, in the Baltic Sea and the adjacent North Sea areas. Potential cascading effects, in coastal ecology, fish ecology and fisheries would be extensive, and point out the necessity to develop further the “ecosystem approach in the environmental monitoring”.  相似文献   

4.
How ecological engineering can serve in coastal protection   总被引:1,自引:0,他引:1  
Traditionally, protection of the coastal area from flooding is approached from an engineering perspective. This approach has often resulted in negative or unforeseen impacts on local ecology and is even known to impact surrounding ecosystems on larger scales. In this paper, the utilization of ecosystem engineering species for achieving civil-engineering objectives or the facilitation of multiple use of limited space in coastal protection is focused upon, either by using ecosystem engineering species that trap sediment and damp waves (oyster beds, mussel beds, willow floodplains and marram grass), or by adjusting hard substrates to enhance ecological functioning. Translating desired coastal protection functionality into designs that make use of the capability of appropriate ecosystem engineering species is, however, hampered by lack of a generic framework to decide which ecosystem engineering species or what type of hard-substrate adaptations may be used where and when. In this paper we review successful implementation of ecosystem engineering species in coastal protection for a sandy shore and propose a framework to select the appropriate measures based on the spatial and temporal scale of coastal protection, resulting in a dynamic interaction between engineering and ecology. Modeling and monitoring the bio-physical interactions is needed, as it allows to upscale successful implementations and predict otherwise unforeseen impacts.  相似文献   

5.
We investigated potential changes in the metazoan endoparasite fauna in the northern Wadden Sea during the past 4 decades by compiling published studies, reports and original data. During the time considered, the parasite fauna has remained basically the same. Only a few changes in parasite species presence occurred that resulted from changes in host distribution and abundance. The introduction of potential host species had little effect on the parasite community because no alien parasites were concomitantly introduced and the native parasites show low prevalence and intensity in these novel hosts. Eutrophication and effects of phased-out hunting may not have had clear bottom–up or top–down effects on the parasite community because of various confounding factors. Parasites depending on several host species may only be subject to strong population changes if all hosts are affected in a unidirectional way. This, however, is rather unlikely to happen in a coastal ecosystem subject to multiple pressures. Hence, parasites appear to be a relatively conservative component of the northern Wadden Sea.  相似文献   

6.
Distributional shifts in species ranges provide critical evidence of ecological responses to climate change. Assessments of climate-driven changes typically focus on broad-scale range shifts (e.g. poleward or upward), with ecological consequences at regional and local scales commonly overlooked. While these changes are informative for species presenting continuous geographic ranges, many species have discontinuous distributions—both natural (e.g. mountain or coastal species) or human-induced (e.g. species inhabiting fragmented landscapes)—where within-range changes can be significant. Here, we use an ecosystem engineer species (Sabellaria alveolata) with a naturally fragmented distribution as a case study to assess climate-driven changes in within-range occupancy across its entire global distribution. To this end, we applied landscape ecology metrics to outputs from species distribution modelling (SDM) in a novel unified framework. SDM predicted a 27.5% overall increase in the area of potentially suitable habitat under RCP 4.5 by 2050, which taken in isolation would have led to the classification of the species as a climate change winner. SDM further revealed that the latitudinal range is predicted to shrink because of decreased habitat suitability in the equatorward part of the range, not compensated by a poleward expansion. The use of landscape ecology metrics provided additional insights by identifying regions that are predicted to become increasingly fragmented in the future, potentially increasing extirpation risk by jeopardising metapopulation dynamics. This increased range fragmentation could have dramatic consequences for ecosystem structure and functioning. Importantly, the proposed framework—which brings together SDM and landscape metrics—can be widely used to study currently overlooked climate-driven changes in species internal range structure, without requiring detailed empirical knowledge of the modelled species. This approach represents an important advancement beyond predictive envelope approaches and could reveal itself as paramount for managers whose spatial scale of action usually ranges from local to regional.  相似文献   

7.
Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change.  相似文献   

8.
Synthesis Prediction and management of species responses to climate change is an urgent but relatively young research field. Therefore, climate change ecology must by necessity borrow from other fields. Invasion ecology is particularly well‐suited to informing climate change ecology because both invasion ecology and climate change ecology address the trajectories of rapidly changing novel systems. Here we outline the broad range of active research questions in climate change ecology where research from invasion ecology can stimulate advances. We present ideas for how concepts, case‐studies and methodology from invasion ecology can be adapted to improve prediction and management of species responses to climate change. A major challenge in this era of rapid climate change is to predict changes in species distributions and their impacts on ecosystems, and, if necessary, to recommend management strategies for maintenance of biodiversity or ecosystem services. Biological invasions, studied in most biomes of the world, can provide useful analogs for some of the ecological consequences of species distribution shifts in response to climate change. Invasions illustrate the adaptive and interactive responses that can occur when species are confronted with new environmental conditions. Invasion ecology complements climate change research and provides insights into the following questions: 1) how will species distributions respond to climate change? 2) how will species movement affect recipient ecosystems? And 3) should we, and if so how can we, manage species and ecosystems in the face of climate change? Invasion ecology demonstrates that a trait‐based approach can help to predict spread speeds and impacts on ecosystems, and has the potential to predict climate change impacts on species ranges and recipient ecosystems. However, there is a need to analyse traits in the context of life‐history and demography, the stage in the colonisation process (e.g. spread, establishment or impact), the distribution of suitable habitats in the landscape, and the novel abiotic and biotic conditions under which those traits are expressed. As is the case with climate change, invasion ecology is embedded within complex societal goals. Both disciplines converge on similar questions of ‘when to intervene?‘ and ‘what to do?‘ which call for a better understanding of the ecological processes and social values associated with changing ecosystems.  相似文献   

9.
Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed‐dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top‐down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem‐level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate‐related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem‐level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems.  相似文献   

10.
Besides the direct impact on the general performance of individual organisms, the ecological consequences of climate change in terrestrial and marine ecosystems are expected to be determined by complex cascading effects arising from modified trophic interactions and competitive relationships. Recently, the synergistic effect of parasitism and climate change has been emphasised as potentially important to host population dynamics and community structure, but robust empirical evidence is generally lacking. The amphipod Corophium volutator is an ecologically important species in coastal soft-bottom habitats of the temperate North Atlantic, and commonly serves as host to microphallid trematodes that cause intensity-dependent and temperature-dependent mortality in the amphipod population. Using a simulation model parameterised with experimental and field data, we demonstrate that a 3.8°C increase in ambient temperature will likely result in a parasite-induced collapse of the amphipod population. This temperature increase is well within the range predicted to prevail by the year 2075 in the International Wadden Sea region from where the model data are obtained. Due to the amphipods’ ecological importance, their population decline may impact the coastal ecosystem as a whole.  相似文献   

11.
Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem   总被引:2,自引:0,他引:2  
Gram positive bacteria recently have been identified as important components of freshwater ecosystems and are also present in marine environments. However, their quantitative significance and possible role in the latter systems is still little studied, in particular in coastal regions. Therefore, we investigated the abundance and composition of Gram positive bacteria in the Wadden Sea, a tidal flat ecosystem in the German Bight of the North Sea. Applying fluorescence in situ hybridization we found that Actinobacteria constitute 4-7% of total bacteria in the Wadden Sea and slightly higher proportions in a freshwater drainage channel connected to the sea by a sluice. The application of denaturing gradient gel electrophoresis of 16S rRNA gene fragments after amplification by an Actinobacteria-specific primer set and subsequent sequencing showed that the composition of the actinobacterial community in the Wadden Sea was distinctly different from that in the freshwater system. A bacterial clone library of 111 clones yielded eight Gram positive phylotypes which are related closely to other marine phylotypes including the Marine Actinobacteria Clade but also to freshwater phylotypes. We applied dilution cultures, enriched with various biopolymers, Marine Broth and Fucus vesiculosus extracts, for isolating bacteria from the bulk water, suspended aggregates, the oxic surface and oxic/anoxic transition zone of the sediment. Fifty-three isolates affiliated to seven families of the order Actinomycetales and nine isolates to the family Bacillaceae. The salinity range (1-45 per thousand NaCl) and growth optimum of 14 strains from various families showed that all except one strain exhibited a rather broad range of sustained growth from 1 per thousand to >or= 20 per thousand NaCl and several strains exhibited an optimum of > 10 per thousand NaCl. The results indicate that the Gram positive bacterial community in the Wadden Sea is surprisingly diverse and consists mainly of indigenous species which appear to be well adapted to the environmental conditions of this coastal ecosystem.  相似文献   

12.
全球变化主要过程对海滨生态系统生物入侵的影响   总被引:1,自引:0,他引:1  
作为海陆交错带的海滨生态系统是海洋与陆地的过渡带, 是承受全球变化及其引起海平面上升等影响最为前沿、最为重要的缓冲带, 同时又是人类活动极为频繁和强烈的地带, 因此海滨生态系统是生物入侵的高发区之一。本文在分析海滨生态系统生物入侵现状的基础上, 分析了CO2升高、海平面上升和富营养化等全球变化过程对海滨生态系统生物入侵的影响: CO2浓度上升改变了入侵种的竞争态势, 海平面上升调整了入侵种的空间分布格局, 而富营养化为外来入侵种的进一步拓展提供了动力。为了深入揭示全球变化对海滨生态系统生物入侵过程的潜在影响, 很有必要在阐明单因子作用机制与过程的基础上加强与其他组分的交互作用研究, 以及中、长时间尺度上的动态分析。与此同时, 生物入侵导致的海滨生态系统变化对全球变化相关过程的反馈作用研究也具有极其重要的意义。  相似文献   

13.
Since the present quality state of the Wadden Sea is judged more discordantly than that of the North Sea, it is examined whether the Wadden Sea is a separate ecosystem. The nutrient load into the Wadden Sea and the trend of the load are assessed. Biological indicators of the ecological state of the Wadden Sea are examined with the result that there are signs of a bad as well as of a good state. This contradiction is assigned to the fact that quality standards are absent. Self-protection mechanisms of the Wadden Sea are discussed with respect to their responsibility for the relatively good state. A qualitative model is proposed to explain the long-term behaviour of the ecosystem.  相似文献   

14.
The Wadden Sea is an ecotone of far-reaching importance. Its nature is continuously changing, and ecological monitoring is needed to identify and analyse trends, and to inform the general public about accelerated change caused by human impact. Sustained ecological research with a diversified monitoring program is essential to overcome the ‘immature phase’ of short-term and single-site studies in ecological science. Long-term and wide-scale phenomena are of increasing relevance to human welfare. Ecological monitoring includes retrospective and ongoing recordings of physical, chemical and biological parameters on a regional scale. It improves our understanding of natural patterns and processes, and of the distortions caused by man. It may provide early warnings. It is a necessary precondition for translating the principle of anticipatory action into practical policy, and it also documents the effects of actions taken. Monitoring the Wadden Sea will help to protect its great variety of flora and fauna, and will also prevent it from deteriorating into a gray coastal backwater, serving for utility purposes only.  相似文献   

15.
Tropical grassy biomes (TGBs) are changing rapidly the world over through a coalescence of high rates of land-use change, global change and altered disturbance regimes that maintain the ecosystem structure and function of these biomes. Our theme issue brings together the latest research examining the characterization, complex ecology, drivers of change, and human use and ecosystem services of TGBs. Recent advances in ecology and evolution have facilitated a new perspective on these biomes. However, there continues to be controversies over their classification and state dynamics that demonstrate critical data and knowledge gaps in our quantitative understanding of these geographically dispersed regions. We highlight an urgent need to improve ecological understanding in order to effectively predict the sensitivity and resilience of TGBs under future scenarios of global change. With human reliance on TGBs increasing and their propensity for change, ecological and evolutionary understanding of these biomes is central to the dual goals of sustaining their ecological integrity and the diverse services these landscapes provide to millions of people.This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.  相似文献   

16.
Synergistic Effects of Climate and Fishing in a Marine Ecosystem   总被引:1,自引:0,他引:1  
Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere. Author Contributions  RRK conceived the project and GB analysed the data. RRK, GB and JAL co-wrote the paper.  相似文献   

17.
综合认识大尺度的宏观生态系统结构功能、空间变异和动态演变的过程机理和模式机制,实现对生态系统变化及其对人类福祉影响的定量模拟、科学评估和预测预警,服务生态系统的利用保护及调控管理,是当代宏观生态系统科学的重要发展方向,正在孕育并形成大尺度的宏观生态系统科学整合生态学(IEMES)研究新领域。本研究通过对宏观生态系统科学整合生态学研究的基础理论、多学科知识融合途径及其关键技术问题的系统分析,形成以下几个基本认识: 1)宏观生态系统科学整合生态学研究是以区域、大陆和全球尺度的宏观生态系统为研究对象,采用多学科知识融合方法和技术,致力于解决人类社会发展的食物安全、资源安全、生态安全、环境安全等重大资源环境问题。2)宏观生态系统科学整合生态学研究的基本科技任务是: 理解宏观生态系统的结构功能基本属性,监测生态系统状态变化,解释生态系统时空演变规律,认知生态系统运维过程机理,定量评估生态系统功能状态及服务能力,预测生态系统动态演变及地理格局,预警生态系统变化及生态环境灾害。3)宏观生态系统科学整合生态学研究需要重新构造“多源数据分析-多模型模拟-多学科知识融合”的理论和方法学体系,发展“多尺度观测、多方法印证、多过程融合、跨尺度模拟”的多学科知识融合关键技术。4)大陆尺度的地基-空基-天基多时空尺度生态系统观测试验网络是承载多学科知识深度融合研究的基础科技设施,需要围绕区域、大陆和全球尺度的宏观生态系统科学问题,发展多要素-多过程-多界面-多介质-多尺度-多方法的多学科维度生态学知识融合关键技术。  相似文献   

18.
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.  相似文献   

19.
The common cord-grass Spartina anglica, a fertile hybrid of S. maritima and S. alterniflora, was planted in the European Wadden Sea extensively during the late 1920s and 1930s to promote sediment accretion. After establishment, it colonised as a pioneer plant in the upper tidal zone, where it occurs frequently in coherent swards at the seaward front of saltmarshes and in patches on the tidal flats. Often, a conspicuous, almost monotypic, belt of S. anglica is formed. Over the last two decades, an increase in abundance and accelerated spread of S. anglica was observed, possibly promoted by warmer spring temperatures. This alien species may benefit from global warming, and there is considerable concern about its harmful impacts on the native biocoenoses and native biodiversity of the unique Wadden Sea ecosystem, encompassing effects on hydromorphodynamics and coastal protection. For a definitive assessment, however, an adequate quantification and comparison of documented and potential effects of S. anglica is important, but currently unavailable. Consequently, no management strategy exists for the prevention or restoration of the Wadden Sea ecosystem. Thus, the development of an alien species plan on the level of the Trilateral Cooperation on the Protection of the Wadden Sea is essential.  相似文献   

20.
A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号