首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

2.
Many neurodegenerative diseases are characterized by ubiquitin-positive protein aggregates or inclusion bodies. Ubiquitin-conjugated proteins are degraded by the 20/26S proteasome, and reduced proteasome peptidase activities in brain homogenates have been reported in pathologic lesions of Parkinson's and Alzheimer's diseases. However, it is unknown whether crude extracts of human brain contain other proteases having peptidase activities. We found a novel protease of molecular weight of approximately 105 kDa in normal human brain, which exhibited trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities (corresponding to 52% and 21% of the total activities in crude extracts) but not peptidyl glutamyl peptide hydrolase activity. Both T-L and ChT-L activities of this protease were partially inhibited by proteasome inhibitors (MG132, lactacystin) and, in contrast to those of the proteasome, also by sodium dodecyl sulfate. A simple method to obtain a brain fraction specific to the 20/26S proteasome was developed. Our human brain data suggest that T-L and ChT-L activity levels of the proteasome reported previously may include those of the 105 kDa protease, an enzyme of as yet unknown biological significance, and that it is necessary to separate the proteasome from this protease to evaluate the actual status of the ubiquitin-proteasome system in neurodegenerative disorders.  相似文献   

3.
The ubiquitin-proteasome pathway is a major route of degradation of cell proteins. It also plays an essential role in maintaining cell homeostasis by degrading many rate-limiting enzymes and critical regulatory proteins. Alterations in proteasome activity have been implicated in a number of pathologies including Parkinson's disease, Alzheimer's disease and diabetes. The eukaryotic proteasome is a multicatalytic protease characterized by three activities with distinct specificities against peptide substrates. Although substrates were identified which could selectively measure the individual activities in the purified proteasome little data is available on how specific those substrates are for proteasomal activity when used with biological samples which may contain many other active peptidases. Here we examine the three major peptidase activities in lysates of two cell types and in a liver cytosol fraction in the presence of specific proteasome inhibitors and after fractionation by gel permeation chromatography. We demonstrate that other proteinases present in these preparations can degrade the commonly used proteasome substrates under the standard assay conditions. We develop a simple method for separating the proteasome from the lower molecular weight proteases using a 500kDa molecular weight cut-off membrane. This allows proteasome activity to be accurately measured in crude biological samples and may have quite broad applicability. We also identify low molecular weight tryptic activity in both the cell and tissue preparations which could not be inhibited by the proteasome inhibitor epoxomycin but was inhibitable by two cysteine proteinase inhibitors and by lactacystin suggesting that lactacystin may not be completely proteasome specific.  相似文献   

4.
5.
c-Jun is an immediate-early gene whose degradation by the proteasome pathway is required for an efficient transactivation. In this report, we demonstrated that the c-Jun coactivator, nascent polypeptide associated complex and coactivator alpha (alphaNAC) was also a target for degradation by the 26S proteasome. The proteasome inhibitor lactacystin increased the metabolic stability of alphaNAC in vivo, and lactacystin, MG-132, or epoxomicin treatment of cells induced nuclear translocation of alphaNAC. We have shown that the ubiquitous kinase glycogen synthase kinase 3beta (GSK3beta) directly phosphorylated alphaNAC in vitro and in vivo. Inhibition of the endogenous GSKappa3beta activity resulted in the stabilization of this coactivator in vivo. We identified the phosphoacceptor site in the C-terminal end of the coactivator, on position threonine 159. We demonstrated that the inhibition of GSK3beta activity by treatment of cells with the inhibitor 5-iodo-indirubin-3'-monoxime, as well as with a dominant-negative GSK3beta mutant, induced the accumulation of alphaNAC in the nuclei of cells. Mutation of the GSK3beta phosphoacceptor site on alphaNAC induced a significant increase of its coactivation potency. We conclude that GSK3beta-dependent phosphorylation of alphaNAC was the signal that directed the protein to the proteasome. The accumulation of alphaNAC caused by the inhibition of the proteasome pathway or the activity of GSK3beta contributes to its nuclear translocation and impacts on its coactivating function.  相似文献   

6.
The 26S proteasome is the central protease of the ubiquitin-dependent pathway of protein degradation. The molecule has a molecular mass of approximately 2000 kD and has a highly conserved structure in eukaryotes. The 26S proteasome is formed by a barrel-shaped 20S core complex and two polar 19S complexes. The 20S complex has C2 symmetry and is formed by four seven-membered rings of which the outer rings (-type subunits) are rotated by 25.7° relative to the inner rings while the inner rings (-type subunits) are in register. From a comparison of the activity and regulation of the 26S and 20S particles it can be deduced that the 20S particle contains the protease activity while the 19S complex contains isopeptidase, ATPase and protein unfolding activities. In this article we describe the structures of various proteasome complexes as determined by electron microscopy and discuss structural implications of their subunit sequences.  相似文献   

7.
We previously showed that the one-electron reduction product of nitric oxide (NO), nitroxyl (HNO), irreversibly inhibits the proteolytic activity of the model cysteine protease papain. This result led us to investigate the differential effects of the nitrogen oxides, such as nitroxyl (HNO), NO, and in situ-generated peroxynitrite on cysteine modification-sensitive cellular proteolytic enzymes. We used Angeli's salt, diethylaminenonoate (DEA/NO), and 3-morpholinosydnoniminehydrochloride (SIN-1), as donors of HNO, NO, and peroxynitrite, respectively. In this study we evaluated their inhibitory activities on the lysosomal mammalian papain homologue cathepsin B and on the cytosolic 26S proteasome in THP-1 monocyte/macrophages after LPS activation or TPA differentiation. HNO-generating Angeli's salt caused a concentration-dependent (62 +/- 4% at 316 muM) inhibition of the 26S proteasome activity, resulting in accumulation of protein-bound polyubiquitinylated proteins in LPS-activated cells, whereas neither DEA/NO nor SIN-1 showed any effect. Angeli's salt, but not DEA/NO or SIN-1, also caused (94 +/- 2% at 316 muM) inhibition of lysosomal cathepsin B activity in LPS-activated cells. Induction of macrophage differentiation did not significantly alter the inhibitory effect of HNO on lysosomal cathepsin B activity, but protected the proteasome from HNO-induced inhibition. The protection awarded by macrophage differentiation was associated with induction of the GSH synthesis rate-limiting enzyme gamma-glutamylcysteine synthetase, as well as with increased intracellular GSH. In conclusion, HNO abrogates both lysosomal and cytosolic proteolysis in THP-1 cells. Macrophage differentiation, associated with upregulation of antioxidant defenses such as increased cellular GSH, does not protect the lysosomal cysteine protease cathepsin B from inhibition.  相似文献   

8.
Most proteins in eukaryotic cells are degraded by a highly selective non-lysosomal pathway that requires ATP and a large multicatalytic proteinase complex known as the 26S proteasome. In the present study, we evaluated the possibility that the proteasome-mediated pathway is involved in the regulation of laccase production by the efficient lignin-degrading basidiomycete Trametes versicolor in response to cadmium. These studies were performed using MG132 and lactacystin beta-lactone as specific proteasome inhibitors separately added to the culture medium of 7-day-old mycelia of T. versicolor at the start of incubation with 10-200 muM CdCl(2). We found that Cd(2+) stimulated laccase activity at all concentrations tested. The highest increase was observed at 100 muM Cd(2+), where laccase activity was three to fivefold higher than in Cd(2+)-free cultures. Blocking of proteasome function in Cd(2+)-supplemented cultures resulted in the considerably lower laccase activity in comparison to controls with no proteasomal inhibitor added. The decline of extracellular laccase activity triggered by the proteasome inhibitors was especially significant in the case of cultures with 100 muM Cd(2+), where around seven and threefold lost of laccase activity was observed for MG132 and lactacystin beta-lactone, respectively. Similar findings were obtained for intracellular laccase. In contrast to Cd(2+)-supplemented cultures, no significant change in laccase activity could be detected for Cd(2+)-free cultures after exposure to the proteasome inhibitors. Effects observed with chloroquine, the inhibitor of lysosomal proteolysis, added to T. versicolor cultures were markedly different from those found in the case of the proteasome inhibitors. We also showed that addition of Cd(2+) to growing cultures of T. versicolor did not significantly affect proteasome activities detected in high molecular (above 500 kDa) fractions of mycelial extracts. Our results strongly support the interpretation that the proteasome-mediated proteolytic pathway plays an important role in the regulation of T. versicolor laccase activity in response to Cd(2+).  相似文献   

9.
10.
Proteasome impairment has been shown to be involved in neuronal degeneration. Antiepileptic lamotrigine has been demonstrated to have a neuroprotective effect. However, the effect of lamotrigine on the proteasome inhibition-induced neuronal cell death has not been studied. Therefore, we assessed the effect of lamotrigine on the proteasome inhibition-induced neuronal cell apoptosis in relation to cell death process using differentiated PC12 cells and SH-SY5Y cells. The proteasome inhibitors MG132 and MG115 induced a decrease in the levels of Bid and Bcl-2 proteins, an increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, cytochrome c release and activation of caspases (-8, -9 and -3). The addition of lamotrigine reduced the proteasome inhibitor-induced changes in the apoptosis-related protein levels, production of reactive oxygen species, depletion and oxidation of glutathione (GSH), and cell death in both cell lines. Lamotrigine and N-acetylcysteine alone did not affect the levels of 26S proteasome and activity of 20S proteasome. MG132 did not alter the levels of 26S proteasome but decreased activity of 20S proteasome. Lamotrigine and N-acetylcysteine attenuated MG132-induced decrease in the activity of 20S proteasome. The results show that lamotrigine appears to suppress the proteasome inhibitor-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The suppressive effect of lamotrigine appears to be associated with its inhibitory effect on the production of reactive oxygen species, the depletion and oxidation of GSH and the activity reduction of 20S proteasome.  相似文献   

11.
Proteasomes are large, multisubunit proteases with highly conserved structures. The 26S proteasome of eukaryotes is an ATP-dependent enzyme of about 2 MDa, which acts as the central protease of the ubiquitin-dependent pathway of protein degradation. The core of the 26S complex is formed by the 20S proteasome, an ATP-independent, barrel-shaped protease of about 700 kDa, which has also been detected in archaebacteria and, more recently, in eubacteria. Currently, the distribution of 20S proteasomes in eubacteria appears limited to the actinomycetes, while most other eubacteria contain a related complex of simpler structure.  相似文献   

12.
The 26S proteasome is a self-compartmentalizing protease responsible for the degradation of intracellular proteins. This giant intracellular protease is formed by several subunits arranged into two 19S polar caps-where protein recognition and ATP-dependent unfolding occur-flanking a 20S central barrel-shaped structure with an inner proteolytic chamber. Proteins targeted to the 26S proteasome are conjugated with a polyubiquitin chain by an enzymatic cascade before delivery to the 26S proteasome for degradation into oligopeptides. As a self-compartmentalizing protease, the 26S proteasome circumvents proteins not destined for degradation and can be deployed to the cytoplasmic and nuclear compartments. The 26S proteasome is a representative of emerging group of giant proteases, including tricorn protease, multicorn protease, and TPPII (tripeptidyl peptidase II).  相似文献   

13.
Within 24 h of hormonally stimulated 3T3-L1 adipocyte differentiation, there are dramatic changes in the protein levels of p130 and p107, two members of the retinoblastoma tumor suppressor gene family. Designated the "p103:p107" switch, this alteration is characterized by a rapid and transient drop in p130 protein levels accompanied by a transient increase in both p107 mRNA and protein levels. Using protease inhibitors, the specific proteolytic pathway involved in degradation of p130 was examined. Treatment of cells with N-acetyl-leu-leu-norleucinal, an inhibitor that blocks proteolytic activity of type I calpain and the 26S proteasome, resulted in a complete block in the degradation of p130 protein, as well as adipocyte differentiation, suggesting that one of these pathways is involved in regulating p130 protein levels. Similar analysis with lactacystin, a specific inhibitor of the 26S proteasome, also resulted in a complete block in both differentiation and p130 degradation. Furthermore, both inhibitors blocked the increase in p107 protein levels normally observed on Day 1, suggesting that the p130:p107 switch is required for adipocyte differentiation and one of the early molecular events involved in activating the p130:p107 switch is the specific degradation of p130 by the 26S proteasome.  相似文献   

14.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

15.
16.
The present study was conducted to explore the potential role of proteasome pathway in NSAIDs-induced apoptosis. We employed sulindac as a NSAID, and chose the lactacystin for inhibition of proteasome activity. Assessment of apoptosis and proteasome activity assay were undertaken. We demonstrated that sulindac treatment resulted in a decrease of proteasome activity, and that the co-treatment of a proteasome inhibitor lactacystin potentiated the extent of sulindac-induced apoptosis in HT-29 cells by augmentation of the decrease in proteasome activity. Elucidation of the mechanism underlying the regression of colon cancers by combinations of sulindac and lactacystin seems to be an immediate challenge for the near future.  相似文献   

17.
The 26S proteasome is an eukaryotic ATP-dependent, dumbbell-shaped protease complex with a molecular mass of approximately 2000 kDa. It consists of a central 20S proteasome, functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles, composed of multiple subunits of 25–110 kDa attached to the central portion in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been determined by recombinant DNA techniques, but structural analyses of the regulatory subunits of the 26S proteasome are still in progress. The regulatory subunits are classified into two subgroups, a subgroup of at least 6 ATPases that constitute a unique multi-gene family encoding homologous polypeptides conserved during evolution and a subgroup of approximately 15 non-ATPase subunits, most of which are structurally unrelated to each other.  相似文献   

18.
By generating peptides from intracellular antigens which are then presented to T cells, the ubiquitin/26S proteasome system plays a central role in the cellular immune response. The proteolytic properties of the proteasome are adapted to the requirements of the immune system by proteasome components whose synthesis is under the control of interferon-γ. Among these are three subunits with catalytic sites that are incorporated into the enzyme complex during its de novo synthesis. Thus, the proteasome assembly pathway and the formation of immunoproteasomes play a critical regulatory role in the regulation of the proteasome's catalytic properties. In addition, interferon-γ also induces the synthesis of the proteasome activator PA28 which, as part of the so-called hybrid proteasome, exerts a more selective function in antigen presentation. Consequently, the combination of a number of regulatory events tunes the proteasome system to gain maximal efficiency in the generation of peptides with regard to their quality and quantity.  相似文献   

19.
Glutamate-L-cysteine ligase (GLCL [EC 6.3.2.2], also referred to as gamma-glutamylcysteine synthetase) catalyzes the rate-limiting reaction in the synthesis of the important cellular antioxidant glutathione. GLCL is a heterodimer consisting of a catalytic (GLCLC) and a regulatory (GLCLR) subunit. The structure of the human GLCLC subunit gene, GLCLC, which has been mapped to chromosome 6p12, spans 51.4 kb and consists of 16 exons separated by 15 introns.  相似文献   

20.
The 26S proteasome, composed of the 20S core and the 19S regulatory complex, plays a central role in ubiquitin-dependent proteolysis by catalyzing degradation of polyubiquitinated proteins. In a search for proteins involved in regulation of the proteasome, we affinity purified the 19S regulatory complex from HeLa cells and identified a novel protein of 43 kDa in size as an associated protein. Immunoprecipitation analyses suggested that this protein specifically interacted with the proteasomal ATPases. Hence the protein was named proteasomal ATPase-associated factor 1 (PAAF1). Immunoaffinity purification of PAAF1 confirmed its interaction with the 19S regulatory complex and further showed that the 19S regulatory complex bound with PAAF1 was not stably associated with the 20S core. Overexpression of PAAF1 in HeLa cells decreased the level of the 20S core associated with the 19S complex in a dose-dependent fashion, suggesting that PAAF1 binding to proteasomal ATPases inhibited the assembly of the 26S proteasome. Proteasomal degradation assays using reporters based on green fluorescent protein revealed that overexpression of PAAF1 inhibited the proteasome activity in vivo. Furthermore, the suppression of PAAF1 expression that is mediated by small inhibitory RNA enhanced the proteasome activity. These results suggest that PAAF1 functions as a negative regulator of the proteasome by controlling the assembly/disassembly of the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号