首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fatty acids activate the uncoupling protein UCP1 by a still controversial mechanism. Two models have been put forward where the fatty acid operates as either substrate ("fatty acid cycling hypothesis") or prosthetic group ("proton buffering model"). Two sets of experiments that should help to discriminate between the two hypothetical mechanisms are presented. We show that undecanosulfonate activates UCP1 in respiring mitochondria under conditions identical to those required for the activation by fatty acids. Since alkylsulfonates cannot cross the lipid bilayer, these experiments rule out the fatty acid cycling hypothesis as the mechanism of uncoupling. We also demonstrate that without added nucleotides and upon careful removal of endogenous fatty acids, brown adipose tissue (BAT) mitochondria from cold-adapted hamsters respire at the full uncoupled rate. Addition of nucleotides lower the respiratory rate tenfold. The high activity observed in the absence of the two regulatory ligands is an indication that UCP1 displays an intrinsic proton conductance that is fatty acid-independent. We propose that the fatty acid uncoupling mediated by other members of the mitochondrial transporter family probably involves a carrier to pore transition and therefore has little in common with the activation of UCP1.  相似文献   

3.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

4.
Noradrenaline signals the initiation of brown fat thermogenesis and the fatty acids liberated by the hormone-stimulated lipolysis act as second messengers to activate the uncoupling protein UCP1. UCP1 is a mitochondrial transporter that catalyses the re-entry of protons to the mitochondrial matrix thus allowing a regulated discharge of the proton gradient. The high affinity of UCP1 for fatty acids is a distinct feature of this uncoupling protein. The uncoupling proteins belong to a protein superfamily formed by the mitochondrial metabolite carriers. Members of this family present a tripartite structure where a domain containing two transmembrane helices, linked by a long hydrophilic loop, is repeated three times. Using protein chimeras, where the repeats had been swapped between UCP1 and UCP3, it has been shown that the central third of UCP1 is necessary and sufficient for the response of the protein to fatty acids. We have extended those studies and in the present report we have generated protein chimeras where different regions of the second repeat of UCP1 have been sequentially replaced with their UCP2 counterparts. The resulting chimeras present a progressive degradation of the characteristic bioenergetic properties of UCP1. We demonstrate that the presence of the second matrix loop is necessary for the high affinity activation of UCP1 by fatty acids.  相似文献   

5.
Although the literature contains many studies on the function of UCP3, its role is still being debated. It has been hypothesized that UCP3 may mediate lipid hydroperoxide (LOOH) translocation across the mitochondrial inner membrane (MIM), thus protecting the mitochondrial matrix from this very aggressive molecule. However, no experiments on mitochondria have provided evidence in support of this hypothesis. Here, using mitochondria isolated from UCP3-null mice and their wild-type littermates, we demonstrate the following. (i) In the absence of free fatty acids, proton conductance did not differ between wild-type and UCP3-null mitochondria. Addition of arachidonic acid (AA) to such mitochondria induced an increase in proton conductance, with wild-type mitochondria showing greater enhancement. In wild-type mitochondria, the uncoupling effect of AA was significantly reduced both when the release of O2˙̄ in the matrix was inhibited and when the formation of LOOH was inhibited. In UCP3-null mitochondria, however, the uncoupling effect of AA was independent of the above mechanisms. (ii) In the presence of AA, wild-type mitochondria released significantly more LOOH compared with UCP3-null mitochondria. This difference was abolished both when UCP3 was inhibited by GDP and under a condition in which there was reduced LOOH formation on the matrix side of the MIM. These data demonstrate that UCP3 is involved both in mediating the translocation of LOOH across the MIM and in LOOH-dependent mitochondrial uncoupling.  相似文献   

6.
Physiological role of mitochondrial uncoupling proteins UCP2 and UCP3, homologous to UCP1 from brown adipose tissue, is unclear. It was proposed recently that UCP2 and UCP3 are metabolic triggers that switch oxidation of glucose to oxidation of fatty acids, exporting pyruvate from mitochondria. In the present study we tried to verify this hypothesis using ground squirrels (Spermophilus undulatus), since expression of all UCPs in different tissues increases during winter season, and UCP1 is abundant in brown fat. We confirmed the possibility of nonspecific transport of pyruvate through UCP1 in brown fat mitochondria and tried to identify similar transport in liver and skeletal muscle mitochondria where UCP2 and UCP3 are expressed. Transport of pyruvate mediated by UCP1 in mitochondria of brown fat was observed using valinomycin-induced swelling of non-respiring mitochondria in 55 mM potassium pyruvate and was inhibited by GDP. In contrast, mitochondria of liver and skeletal muscles in similar conditions did not exhibit electrogenic transport of pyruvate anions that could be related to functioning of UCP2 and UCP3. At the same time, functioning of pyruvate carrier was detected in these mitochondria by nigericin-induced passive swelling or valinomycin-induced active swelling in potassium pyruvate that was inhibited by α-CHC, a specific inhibitor of the pyruvate carrier. Thus, our results suggest that in contrast to UCP1 of brown fat, UCP2 and UCP3 from intact liver and skeletal muscle mitochondria of winter active ground squirrels are unable to carry out pyruvate transport.  相似文献   

7.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

8.
An interaction between free fatty acids and UCP1 (uncoupling protein-1) leading to de-energization of mitochondria was assumed to be a key event for triggering heat production in brown fat. Recently, Matthias et al., finding indistinguishable de-energization of isolated brown fat mitochondria by fatty acids in UCP1-deficient mice and control mice, challenged this assumption (Matthias, A., Jacobsson, A., Cannon, B., and Nedergaard, J. (1999) J. Biol. Chem. 274, 28150-28160). Since their results were obtained using UCP1-deficient and control mice on an undefined genetic background, we wanted to determine unambiguously the phenotype of UCP1 deficiency with the targeted Ucp1 allele on congenic C57BL/6J and 129/SvImJ backgrounds. UCP1-deficient congenic mice have a very pronounced cold-sensitive phenotype; however, deficient mice on the F1 hybrid background were resistant to cold. We propose that heterosis provides a mechanism to compensate for UCP1 deficiency. Contrary to the results of Matthias et al., we found a significant loss of fatty acid-induced de-energization, as reflected by membrane potential and oxygen consumption, in brown fat mitochondria from UCP1-deficient mice. Unlike cold sensitivity, fatty acid-induced uncoupling of mitochondria was independent of the genetic background of UCP1-deficient mice. We propose that intracellular free fatty acids directly regulate uncoupling activity of UCP1 in a manner consistent with models described in the literature.  相似文献   

9.
To test if mitochondrial uncoupling in white adipocytes is responsible for obesity resistance of the aP2-Ucp transgenic mice expressing ectopic uncoupling protein 1 (UCPI) in white fat, mitochondrial membrane potential (delta psi(m)) was estimated by flow cytometry in adipocytes isolated from gonadal fat. Ectopic UCP1 (approximately 0.8 mol UCP1/mol respiratory chain) decreased the delta psi(m) and rendered the potential sensitive to GDP and fatty acids. These ligands of UCP1 had no effect on delta psi(m) in white adipocytes from non-transgenic mice, suggesting that the function of endogenous UCP2 in adipocytes was not affected. The results support the hypothesis that mitochondrial uncoupling in white fat may prevent development of obesity.  相似文献   

10.
The cloning of the uncoupling protein (UCP)1 homologs UCP2 and UCP3 has raised considerable interest in the mechanism. The expression of UCP3 mainly in skeletal muscle mitochondria and the potency of the skeletal muscle as a thermogenic organ made UCP3 an attractive target for studies toward manipulation of energy expenditure to fight disorders such as obesity and type 2 diabetes. Overexpressing UCP3 in mice resulted in lean, hyperphagic mice. However, the lack of an apparent phenotype in mice lacking UCP3 triggered the search for alternative functions of UCP3. The observation that fatty acid levels significantly affect UCP3 expression has given UCP3 a position in fatty acid handling and/or oxidation. Emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than the regulation of energy expenditure through thermogenesis. It has been proposed that UCP3 functions to export fatty acid anions away from the mitochondrial matrix. In doing so, fatty acids are exchanged with protons, explaining the uncoupling activity of UCP3. The exported fatty acid anions may originate from hydrolysis of fatty acid esters by a mitochondrial thioesterase, or they may have entered the mitochondria as nonesterified fatty acids by incorporating into and flip‐flopping across the mitochondrial inner membrane. Regardless of the origin of the fatty acid anions, this putative function of UCP3 might be of great importance in protecting mitochondria against fatty acid accumulation and may help to maintain muscular fat oxidative capacity.  相似文献   

11.
Elucidation of the regulation of uncoupling protein 1 (UCP1) activity in its native environment, i.e. the inner membrane of brown-fat mitochondria, has been hampered by the presence of UCP1-independent, quantitatively unresolved effects of investigated regulators on the brown-fat mitochondria themselves. Here we have utilized the availability of UCP1-ablated mice to dissect UCP1-dependent and UCP1-independent effects of regulators. Using a complex-I-linked substrate (pyruvate), we found that UCP1 can mediate a 4-fold increase in thermogenesis when stimulated with the classical positive regulator fatty acids (oleate). After demonstrating that the fatty acids act in their free form, we found that UCP1 increased fatty acid sensitivity approximately 30-fold (as compared with the 1.5-fold increase reported earlier based on nominal fatty acid values). By identifying the UCP1-mediated fraction of the response, we could conclude that the interaction between purine nucleotides (GDP) and fatty acids (oleate) unexpectedly displayed simple competitive kinetics. In GDP-inhibited mitochondria, oleate apparently acted as an activator. However, only a model in which UCP1 is inherently active (i.e."activating" fatty acids cannot be included in the model), where GDP functions as an inhibitor with a K(m) of 0.05 mm, and where oleate functions as a competitive antagonist for the GDP effect (with a K(i) of 5 nm) can fit all of the experimental data. We conclude that, when examined in its native environment, UCP1 functions as a proton (equivalent) carrier in the absence of exogenous or endogenous fatty acids.  相似文献   

12.
Mice lacking the thermogenic mitochondrial membrane protein UCP1 (uncoupling protein 1) - and thus all heat production from brown adipose tissue - can still adapt to a cold environment (4 °C) if successively transferred to the cold. The mechanism behind this adaptation has not been clarified. To examine possible adaptive processes in the skeletal muscle, we isolated mitochondria from the hind limb muscles of cold-acclimated wild-type and UCP1(–/–) mice and examined their bioenergetic chracteristics. We observed a switch in metabolism, from carbohydrate towards lipid catabolism, and an increased total mitochondrial complement, with an increased total ATP production capacity. The UCP1(–/–) muscle mitochondria did not display a changed state-4 respiration rate (no uncoupling) and were less sensitive to the uncoupling effect of fatty acids than the wild-type mitochondria. The content of UCP3 was increased 3-4 fold, but despite this, endogenous superoxide could not invoke a higher proton leak, and the small inhibitory effect of GDP was unaltered, indicating that it was not mediated by UCP3. Double mutant mice (UCP1(–/–) plus superoxide dismutase 2-overexpression) were not more cold sensitive than UCP1(–/–), bringing into question an involvement of reactive oxygen species (ROS) in activation of any alternative thermogenic mechanism. We conclude that there is no evidence for an involvement of UCP3 in basal, fatty-acid- or superoxide-stimulated oxygen consumption or in GDP sensitivity. The adaptations observed did not imply any direct alternative process for nonshivering thermogenesis but the adaptations observed would be congruent with adaptation to chronically enhanced muscle activity caused by incessant shivering in these mice.  相似文献   

13.
The bioenergetics of brown fat mitochondria isolated from UCP1-ablated mice were investigated. The mitochondria had lost the high GDP-binding capacity normally found in brown fat mitochondria, and they were innately in an energized state, in contrast to wild-type mitochondria. GDP, which led to energization of wild-type mitochondria, was without effect on the brown fat mitochondria from UCP1-ablated mice. The absence of thermogenic function did not result in reintroduction of high ATP synthase activity. Remarkably and unexpectedly, the mitochondria from UCP1-ablated mice were as sensitive to the de-energizing ("uncoupling") effect of free fatty acids as were UCP1-containing mitochondria. Therefore, the de-energizing effect of free fatty acids does not appear to be mediated via UCP1, and free fatty acids would not seem to be the intracellular physiological activator involved in mediation of the thermogenic signal from the adrenergic receptor to UCP1. In the UCP1-ablated mice, Ucp2 mRNA levels in brown adipose tissue were 14-fold higher and Ucp3 mRNA levels were marginally lower than in wild-type. The Ucp2 and Ucp3 mRNA levels were therefore among the highest found in any tissue. These high mRNA levels did not confer on the isolated mitochondria any properties associated with de-energization. Thus, the mere observation of a high level of Ucp2 or Ucp3 mRNA in a tissue cannot be taken as an indication that mitochondria isolated from that tissue will display innate de-energization or thermogenesis.  相似文献   

14.
The discovery of the human homologue of the thermogenic protein UCP1, named uncoupling protein 3 (UCP3), boosted research on the role of this skeletal muscle protein in energy metabolism and body weight regulation. Nowadays, 9 years after its discovery emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than regulating energy expenditure via thermogenesis. UCP3 has been proposed to export fatty acid anions or fatty acid peroxides away from the matrix-side of the mitochondrial inner membrane to prevent their deleterious accumulation. In this way, UCP3 could protect mitochondria against lipid-induced oxidative mitochondrial damage, a function especially important under conditions of high fatty acid supply to skeletal muscle mitochondria. Such function may be clinically relevant in the development of type 2 diabetes mellitus, a condition characterized by muscular fat accumulation, mitochondrial damage and low levels of UCP3.  相似文献   

15.
The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.  相似文献   

16.
In vitro, uncoupling protein 3 (UCP3)-mediated uncoupling requires cofactors [e.g., superoxides, coenzyme Q (CoQ) and fatty acids (FA)] or their derivatives, but it is not yet clear whether or how such activators interact with each other under given physiological or pathophysiological conditions. Since triiodothyronine (T3) stimulates lipid metabolism, UCP3 expression and mitochondrial uncoupling, we examined its effects on some biochemical pathways that may underlie UCP3-mediated uncoupling. T3-treated rats (Hyper) showed increased mitochondrial lipid-oxidation rates, increased expression and activity of enzymes involved in lipid handling and increased mitochondrial superoxide production and CoQ levels. Despite the higher mitochondrial superoxide production in Hyper, euthyroid and hyperthyroid mitochondria showed no differences in proton-conductance when FA were chelated by bovine serum albumin. However, mitochondria from Hyper showed a palmitoyl-carnitine-induced and GDP-inhibited increased proton-conductance in the presence of carboxyatractylate. We suggest that T3 stimulates the UCP3 activity in vivo by affecting the complex network of biochemical pathways underlying the UCP3 activation.  相似文献   

17.
Brown adipose tissue (BAT) and brown in white (brite) adipose tissue, termed also beige adipose tissue, are major sites of mammalian nonshivering thermogenesis. Mitochondrial uncoupling protein 1 (UCP1), specific for these tissues, is the key factor for heat production. Recent molecular aspects of UCP1 structure provide support for the fatty acid cycling model of coupling, i.e. when UCP1 expels fatty acid anions in a uniport mode from the matrix, while uncoupling. Protonophoretic function is ensured by return of the protonated fatty acid to the matrix independent of UCP1. This mechanism is advantageous for mitochondrial uncoupling and compatible with heat production in a pro-thermogenic environment, such as BAT. It must still be verified whether posttranslational modification of UCP1, such as sulfenylation of Cys253, linked to redox activity, promotes UCP1 activity. BAT biogenesis and UCP1 expression, has also been linked to the pro-oxidant state of mitochondria, further endorsing a redox signalling link promoting an establishment of pro-thermogenic state. We discuss circumstances under which promotion of superoxide formation exceeds its attenuation by uncoupling in mitochondria and throughout point out areas of future research into UCP1 function.  相似文献   

18.
The uncoupling protein from brown adipose tissue (UCP1) is a transporter that catalyzes a regulated discharged of the mitochondrial proton gradient. The proton conductance in UCP1 is inhibited by nucleotides and activated by fatty acids. We have recently shown that all-trans-retinoic acid (ATRA) is a high-affinity activator of UCP1. In the present report, we have set to analyze the structural requirements for the ligands that activate UCP1 and particularly the specificity for different retinoids. For this purpose, we have developed a new protocol to determine the activity of UCP1 in respiring yeast mitochondria that can be adapted for high-throughput screenings. Our results evidence differences between the structural requirements for the activation by fatty acids and retinoids. Thus, although all active retinoids must possess a carboxylate, the introduction of additional polar groups renders them inactive. The linear and rigid structure of these molecules suggests the existence of a long hydrophobic binding pocket. We postulate that the access to the retinoid binding site must occur from the lipid bilayer and this could be at the interface between two transmembrane alpha-helices.  相似文献   

19.
Reconstitution of novel mitochondrial uncoupling proteins, human UCP2 and UCP3, expressed in yeast, was performed to characterize fatty acid (FA)-induced H+ efflux in the resulted proteoliposomes. We now demonstrate for the first time that representatives of physiologically abundant long chain FAs, saturated or unsaturated, activate H+ translocation in UCP2- and UCP3-proteoliposomes. Efficiency of lauric, palmitic or linoleic acid was roughly the same, but oleic acid induced faster H+ uniport. We have confirmed that ATP and GTP inhibit such FA-induced H+ uniport mediated by UCP2 and UCP3. Coenzyme Q10 did not further significantly activate the observed H+ efflux. In conclusion, careful instant reconstitution yields intact functional recombinant proteins, UCP2 and UCP3, the activity of which is comparable with UCP1.  相似文献   

20.
In brown-fat mitochondria, fatty acids induce thermogenic uncoupling through activation of UCP1 (uncoupling protein 1). However, even in brown-fat mitochondria from UCP1-/- mice, fatty-acid-induced uncoupling exists. In the present investigation, we used the inhibitor CAtr (carboxyatractyloside) to examine the involvement of the ANT (adenine nucleotide translocator) in the mediation of this UCP1-independent fatty-acid-induced uncoupling in brown-fat mitochondria. We found that the contribution of ANT to fatty-acid-induced uncoupling in UCP1-/- brown-fat mitochondria was minimal (whereas it was responsible for nearly half the fatty-acid-induced uncoupling in liver mitochondria). As compared with liver mitochondria, brown-fat mitochondria exhibit a relatively high (UCP1-independent) basal respiration ('proton leak'). Unexpectedly, a large fraction of this high basal respiration was sensitive to CAtr, whereas in liver mitochondria, basal respiration was CAtr-insensitive. Total ANT protein levels were similar in brown-fat mitochondria from wild-type mice and in liver mitochondria, but the level was increased in brown-fat mitochondria from UCP1-/- mice. However, in liver, only Ant2 mRNA was found, whereas in brown adipose tissue, Ant1 and Ant2 mRNA levels were equal. The data are therefore compatible with a tentative model in which the ANT2 isoform mediates fatty-acid-induced uncoupling, whereas the ANT1 isoform may mediate a significant part of the high basal proton leak in brown-fat mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号