首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homo- and heterodimerization have emerged as prominent features of G-protein-coupled receptors with possible impact on the regulation of their activity. Using a sensitive bioluminescence resonance energy transfer system, we investigated the formation of CXCR4 and CCR2 chemokine receptor dimers. We found that both receptors exist as constitutive homo- and heterodimers and that ligands induce conformational changes within the pre-formed dimers without promoting receptor dimer formation or disassembly. Ligands with different intrinsic efficacies yielded distinct bioluminescence resonance energy transfer modulations, indicating the stabilization of distinct receptor conformations. We also found that peptides derived from the transmembrane domains of CXCR4 inhibited activation of this receptor by blocking the ligand-induced conformational transitions of the dimer. Taken together, our data support a model in which chemokine receptor homo- and heterodimers form spontaneously and respond to ligand binding as units that undergo conformational changes involving both protomers even when only one of the two ligand binding sites is occupied.  相似文献   

2.
CXCR7 is an atypical chemokine receptor that signals through β-arrestin in response to agonists without detectable activation of heterotrimeric G-proteins. Its cognate chemokine ligand CXCL12 also binds CXCR4, a chemokine receptor of considerable clinical interest. Here we report that TC14012, a peptidomimetic inverse agonist of CXCR4, is an agonist on CXCR7. The potency of β-arrestin recruitment to CXCR7 by TC14012 is much higher than that of the previously reported CXCR4 antagonist AMD3100 and differs only by one log from that of the natural ligand CXCL12 (EC(50) 350 nM for TC14012, as compared with 30 nM for CXCL12 and 140 μM for AMD3100). Moreover, like CXCL12, TC14012 leads to Erk 1/2 activation in U373 glioma cells that express only CXCR7, but not CXCR4. Given that with TC14012 and AMD3100 two structurally unrelated CXCR4 antagonists turn out to be agonists on CXCR7, this likely reflects differences in the activation mechanism of the arrestin pathway by both receptors. To identify the receptor domain responsible for these opposed effects, we investigated CXCR4 and CXCR7 C terminus-swapping chimeras. Using quantitative bioluminescence resonance energy transfer, we find that the CXCR7 receptor core formed by the seven-transmembrane domains and the connecting loops determines the agonistic activity of both TC14012 and AMD3100. Moreover, we find that the CXCR7 chimera bearing the CXCR4 C-terminal constitutively associates with arrestin in the absence of ligands. Our data suggest that the CXCR4 and CXCR7 cores share ligand-binding surfaces for the binding of the synthetic ligands, indicating that CXCR4 inhibitors should be tested also on CXCR7.  相似文献   

3.
Ligand binding to a chemokine receptor triggers signaling events through heterotrimeric G-proteins. The mechanisms underlying receptor-mediated G-protein activation in the heterogeneous microenvironments of the plasma membrane are unclear. Here, using live-cell fluorescence resonance energy transfer imaging to detect the proximity between CXCR1-cyan fluorescent protein (CFP) and fluorescence probes that label lipid raft or non-lipid raft microdomains and using fluorescence recovery after photobleaching analysis to measure the lateral diffusion of CXCR1-CFP, we found that interleukin-8 induces association between the receptors and lipid raft microenvironments. Disruption of lipid rafts impaired G-protein-dependent signaling, such as Ca2+ responses and phosphatidylinositol 3-kinase activation, but had no effect on ligand-binding function and did not completely abolish ligand-induced receptor phosphorylation. Our results suggest a novel mechanism by which ligand binding to CXCR1 promotes lipid raft partitioning of receptors and facilitates activation of heterotrimeric G-proteins.  相似文献   

4.
Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor   总被引:10,自引:0,他引:10  
CXCR4, a member of the G protein-coupled receptor family of proteins, is the receptor for stromal cell-derived factor (SDF-1 alpha) and is a principal coreceptor for human immunodeficiency virus type 1 (HIV-1). CXCR4 has also been implicated in breast cancer metastasis. We examined the ability of CXCR4 to homomultimerize in detergent-solubilized cell lysates and in the membranes of intact cells. CXCR4 was found to multimerize in cell lysates containing the detergents CHAPSO or Cymal-7 but not other detergents that have been shown to disrupt the native conformation of CXCR4. CXCR4 expression levels did not affect the observed multimerization and differentially tagged CXCR4 molecules associated only when coexpressed in the same cell. CXCR4 did not interact with CCR5, the other principal HIV-1 coreceptor, when the two proteins were coexpressed. Using bioluminescence resonance energy transfer (BRET(2)), we demonstrated that CXCR4 multimers are found naturally in the intact cell membrane, in both the presence and absence of multiple CXCR4 ligands. Ligand binding did not significantly alter the observed BRET(2) signal, suggesting that CXCR4 exists as a constitutive oligomer. In cell lysates prepared with non-denaturing detergents, CXCR4 sedimented in a manner consistent with a dimer, whereas CCR5 sedimented as a monomer under these conditions. The stable, constitutive dimerization of CXCR4 may contribute to its biological functions in chemokine binding, signaling, and HIV-1 entry.  相似文献   

5.
CXCL8 (IL-8) recruits and activates neutrophils through the G protein-coupled chemokine receptor CXCR1. We showed previously that elastase cleaves CXCR1 and thereby impairs antibacterial host defense. However, the molecular intracellular machinery involved in this process remained undefined. Here we demonstrate by using flow cytometry, confocal microscopy, subcellular fractionation, co-immunoprecipitation, and bioluminescence resonance energy transfer that combined α- and γ-secretase activities are functionally involved in elastase-mediated regulation of CXCR1 surface expression on human neutrophils, whereas matrix metalloproteases are dispensable. We further demonstrate that PAR-2 is stored in mobilizable compartments in neutrophils. Bioluminescence resonance energy transfer and co-immunoprecipitation studies showed that secretases, PAR-2, and CXCR1 colocalize and physically interact in a novel protease/secretase-chemokine receptor network. PAR-2 blocking experiments provided evidence that elastase increased intracellular presenilin-1 expression through PAR-2 signaling. When viewed in combination, these studies establish a novel functional network of elastase, secretases, and PAR-2 that regulate CXCR1 expression on neutrophils. Interfering with this network could lead to novel therapeutic approaches in neutrophilic diseases, such as cystic fibrosis or rheumatoid arthritis.  相似文献   

6.
Ligand binding to G protein-coupled receptors (GPCRs) is thought to induce changes in receptor conformation that translate into activation of downstream effectors. The link between receptor conformation and activity is still insufficiently understood, as current models of GPCR activation fail to take an increasing amount of experimental data into account. To elucidate structure-function relationships in GPCR activation, we used bioluminescence resonance energy transfer to directly assess the conformation of mutants of the chemokine receptor CXCR4. We analyzed substitutions in the arginine cage DRY motif and in the conserved asparagine N(3.35)119, which are pivotal molecular switches for receptor conformation and activation. G(alpha)(i) activation of the mutants was either similar to wild-type CXCR4 (D133N, Y135A, and N119D) or resulted in loss of activity (R134A and N119K). Mutant N119S was constitutively active but further activated by agonist. Bioluminescence resonance energy transfer analysis suggested no simple correlation between conformational changes in response to ligand binding and activation of G(alpha)(i) by the mutants. Different conformations of active receptors were detected (for wild-type CXCR4, D133N, and N119S), suggesting that different receptor conformations are able to trigger G(alpha)(i) activity. Several conformations were also found for inactive mutants. These data provide biophysical evidence for different receptor conformations being active with respect to a single readout. They support models of GPCR structure-activity relationships that take this conformational flexibility of active receptors into account.  相似文献   

7.
Although chemokines are well established to function in immunity and endothelial cell activation and proliferation, a rapidly growing literature suggests that CXC Chemokine receptors CXCR3, CXCR4 and CXCR7 are critical in the development and progression of solid tumors. The effect of these chemokine receptors in tumorigenesis is mediated via interactions with shared ligands I-TAC (CXCL11) and SDF-1 (CXCL12). Over the last decade, CXCR4 has been extensively reported to be overexpressed in most human solid tumors and has earned considerable attention toward elucidating its role in cancer metastasis. To enrich the existing armamentarium of anti-cancerous agents, many inhibitors of CXCL12–CXCR4 axis have emerged as additional or alternative agents for neo-adjuvant treatments and even many of them are in preclinical and clinical stages of their development. However, the discovery of CXCR7 as another receptor for CXCL12 with rather high binding affinity and recent reports about its involvement in cancer progression, has questioned the potential of “selective blockade” of CXCR4 as cancer chemotherapeutics. Interestingly, CXCR7 can also bind another chemokine CXCL11, which is an established ligand for CXCR3. Recent reports have documented that CXCR3 and their ligands are overexpressed in different solid tumors and regulate tumor growth and metastasis. Therefore, it is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies. Emerging evidence also indicates that these receptors are differentially expressed in tumor endothelial cells as well as in cancer stem cells, suggesting their direct role in regulating tumor angiogenesis and metastasis. In this review, we will focus on the signals mediated by this receptor trio via their shared ligands and their role in tumor growth and progression.  相似文献   

8.
Opioid agonists have a broad range of effects on cells of the immune system, including modulation of the inflammatory response, and opioid and chemokine receptors are co-expressed by many white cells. Hetero-oligomerization of the human DOP opioid and chemokine CXCR2 receptors could be detected following their co-expression by each of co-immunoprecipitation, three different resonance energy transfer techniques and the construction of pairs of individually inactive but potentially complementary receptor G-protein alpha subunit fusion proteins. Although DOP receptor agonists and a CXCR2 antagonist had no inherent affinity for the alternative receptor when either receptor was expressed individually, use of cells that expressed a DOP opioid receptor construct constitutively, and in which expression of a CXCR2 receptor construct could be regulated, demonstrated that the CXCR2 antagonist enhanced the function of DOP receptor agonists only in the presence of CXCR2. This effect was observed for both enkephalin- and alkaloid-based opioid agonists, and the effective concentrations of the CXCR2 antagonist reflected CXCR2 receptor occupancy. Entirely equivalent results were obtained in cells in which the native DOP opioid receptor was expressed constitutively and in which expression of the isolated CXCR2 receptor could be induced. These results indicate that a CXCR2 receptor antagonist can enhance the function of agonists at a receptor for which it has no inherent direct affinity by acting as an allosteric regulator of a receptor that is a heterodimer partner for the CXCR2 receptor. These results have novel and important implications for the development and use of small-molecule therapeutics.  相似文献   

9.
We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent β-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent β-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective β-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for β-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.  相似文献   

10.
Human immunodeficiency virus entry into target cells requires sequential interactions of the viral glycoprotein envelope gp120 with CD4 and chemokine receptors CCR5 or CXCR4. CD4 interaction with the chemokine receptor is suggested to play a critical role in this process but to what extent such a mechanism takes place at the surface of target cells remains elusive. To address this issue, we used a confocal microspectrofluorimetric approach to monitor fluorescence resonance energy transfer at the cell plasma membrane between enhanced blue and green fluorescent proteins fused to CD4 and CCR5 receptors. We developed an efficient fluorescence resonance energy transfer analysis from experiments carried out on individual cells, revealing that receptors constitutively interact at the plasma membrane. Binding of R5-tropic HIV gp120 stabilizes these associations thus highlighting that ternary complexes between CD4, gp120, and CCR5 occur before the fusion process starts. Furthermore, the ability of CD4 truncated mutants and CCR5 ligands to prevent association of CD4 with CCR5 reveals that this interaction notably engages extracellular parts of receptors. Finally, we provide evidence that this interaction takes place outside raft domains of the plasma membrane.  相似文献   

11.
Oligomerization of the human delta-opioid receptor and its regulation by ligand occupancy were explored following expression in HEK293 cells using each of co-immunoprecipitation of differentially epitope-tagged forms of the receptor, bioluminescence resonance energy transfer and time-resolved fluorescence resonance energy transfer. All of the approaches identified constitutively formed receptor oligomers, and the time-resolved fluorescence studies confirmed the presence of such homo-oligomers at the cell surface. Neither the agonist ligand [d-Ala(2),d-Leu(5)]enkephalin nor the inverse agonist ligand ICI174864 were able to modulate the oligomerization status of this receptor. Interactions between co-expressed delta-opioid receptors and beta(2)-adrenoreceptors were observed in co-immunoprecipitation studies. Such hetero-oligomers could also be detected using bioluminescence resonance energy transfer although the signal obtained was substantially smaller than for homo-oligomers of either receptor type. Signal corresponding to the delta-opioid receptor-beta(2)-adrenoreceptor hetero-oligomer was increased in the presence of agonist for either receptor. However, substantial levels of this hetero-oligomer were not detected at the cell surface using time-resolved fluorescence resonance energy transfer. These studies demonstrate that, following transient transfection of HEK293 cells, constitutively formed oligomers of the human delta-opioid receptor can be detected by a variety of approaches. However, these are not regulated by ligand occupancy. They also indicate that time-resolved fluorescence resonance energy transfer represents a means to detect such oligomers at the cell surface in populations of intact cells.  相似文献   

12.
To investigate the regulation of the CCR1 chemokine receptor, a rat basophilic leukemia (RBL-2H3) cell line was modified to stably express epitope-tagged receptor. These cells responded to RANTES (regulated upon activation normal T expressed and secreted), macrophage inflammatory protein-1alpha, and monocyte chemotactic protein-2 to mediate phospholipase C activation, intracellular Ca(2+) mobilization and exocytosis. Upon activation, CCR1 underwent phosphorylation and desensitization as measured by diminished GTPase stimulation and Ca(2+) mobilization. Alanine substitution of specific serine and threonine residues (S2 and S3) or truncation of the cytoplasmic tail (DeltaCCR1) of CCR1 abolished receptor phosphorylation and desensitization of G protein activation but did not abolish desensitization of Ca(2+) mobilization. S2, S3, and DeltaCCR1 were also resistant to internalization, mediated greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization, and were only partially desensitized by RANTES, relative to S1 and CCR1. To study CCR1 cross-regulation, RBL cells co-expressing CCR1 and receptors for interleukin-8 (CXCR1, CXCR2, or a phosphorylation-deficient mutant of CXCR2, 331T) were produced. Interleukin-8 stimulation of CXCR1 or CXCR2 cross-phosphorylated CCR1 and cross-desensitized its ability to stimulate GTPase activity and Ca(2+) mobilization. Interestingly, CCR1 cross-phosphorylated and cross-desensitized CXCR2, but not CXCR1. Ca(2+) mobilization by S3 and DeltaCCR1 were also cross-desensitized by CXCR1 and CXCR2 despite lack of receptor phosphorylation. In contrast to wild type CCR1, S3 and DeltaCCR1, which produced sustained signals, cross-phosphorylated and cross-desensitized responses to CXCR1 as well as CXCR2. Taken together, these results indicate that CCR1-mediated responses are regulated at several steps in the signaling pathway, by receptor phosphorylation at the level of receptor/G protein coupling and by an unknown mechanism at the level of phospholipase C activation. Moreover selective cross-regulation among chemokine receptors is, in part, a consequence of the strength of signaling (i.e. greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization) which is inversely correlated with the receptor's susceptibility to phosphorylation. Since many chemokines activate multiple chemokine receptors, selective cross-regulation among such receptors may play a role in their immunomodulation.  相似文献   

13.
The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. In this study, we analyzed the involvement of actin filaments and of microtubules in the control of ligand-induced internalization and recycling of CXC chemokine receptor (CXCR)1 and CXCR2, two closely related G protein-coupled receptors that mediate ELR-expressing CXC chemokine-induced cellular responses. Nocodazole, a microtubule-disrupting agent, did not affect the IL-8-induced reduction in cell surface expression of CXCR1 and CXCR2, nor did it affect the recycling of these receptors following ligand removal and cell recovery at 37 degrees C. In contrast, cytochalasin D, an actin filament depolymerizing agent, promoted the IL-8-induced reduction in cell surface expression of both CXCR1 and CXCR2. Cytochalasin D significantly inhibited the recycling of both CXCR1 and CXCR2 following IL-8-induced internalization, the inhibition being more pronounced for CXCR2 than for CXCR1. Potent inhibition of recycling was observed also when internalization of CXCR2 was induced by another ELR-expressing CXC chemokine, granulocyte chemotactic protein-2. By the use of carboxyl terminus-truncated CXCR1 and CXCR2 it was observed that the carboxyl terminus domains of CXCR1 and CXCR2 were partially involved in the regulation of the actin-mediated process of receptor recycling. The cytochalasin D-mediated inhibition of CXCR2 recycling had a functional relevance because it impaired the ability of CXCR2-expressing cells to mediate cellular responses. These results suggest that actin filaments, but not microtubules, are involved in the regulation of the intracellular trafficking of CXCR1 and CXCR2, and that actin filaments may be required to enable cellular resensitization following a desensitized refractory period.  相似文献   

14.
The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gα(i)-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process.  相似文献   

15.
16.
Homo- and hetero-oligomerization have been reported for several G protein-coupled receptors (GPCRs). The CXCR2 is a GPCR that is activated, among the others, by the chemokines CXCL8 (interleukin-8) and CXCL2 (growth-related gene product beta) to induce cell chemotaxis. We have investigated the oligomerization of CXCR2 receptors expressed in human embryonic kidney cells and generated a series of truncated mutants to determine whether they could negatively regulate the wild-type (wt) receptor functions. CXCR2 receptor oligomerization was also studied by coimmunoprecipitation of green fluorescent protein- and V5-tagged CXCR2. Truncated CXCR2 receptors retained their ability to form oligomers only if the region between the amino acids Ala-106 and Lys-163 was present. In contrast, all of the deletion mutants analyzed were able to form heterodimers with the wt CXCR2 receptor, albeit with different efficiency, competing for wt/wt dimer formation. The truncated CXCR2 mutants were not functional and, when coexpressed with wt CXCR2, interfered with receptor functions, impairing cell signaling and chemotaxis. When CXCR2 was expressed with the AMPA-type glutamate receptor GluR1, CXCR2 dimerization was again impaired in a dose-dependent way, and receptor functions were prejudiced. In contrast, CXCR1, a chemokine receptor that shares many similarities with CXCR2, did not dimerize alone or with CXCR2 and when coexpressed with CXCR2 did not impair receptor signaling and chemotaxis. The formation of CXCR2 dimers was also confirmed in cerebellar neuron cells. Taken together, we conclude from these studies that CXCR2 functions as a dimer and that truncated receptors negatively modulate receptor activities competing for the formation of wt/wt dimers.  相似文献   

17.
G Müller  M Lipp 《Biological chemistry》2001,382(9):1387-1397
The human chemokine receptors CXCR5 and CXCR1 activate signaling pathways via pertussis toxin-sensitive as well as insensitive G proteins. CXCR5 induces Ca2+ signaling and chemotaxis independently of inhibitory G proteins, whereas the same signaling pathways are entirely dependent on inhibitory G proteins for CXCR1. In contrast, activation of the MAP kinase cascade via ERK1/2 is a pertussis toxin-sensitive signaling event for both receptors. Using chimeric CXCR1/CXCR5 receptors we investigated structural requirements for the activation of signal transduction pathways by CXCR5. Individual or multiple intracellular domains of CXCR1 were exchanged for the corresponding sequences of CXCR5, leading to receptors resembling CXCR5 at the cytoplasmic surface to a varying extent. Replacing the second intracellular domain of CXCR1 had a major influence on signaling mediated by inhibitory G proteins, whereas the exchange of the third or carboxy-terminal intracellular domain had only minor effects on signal transduction. Activation of the MAP kinase cascade via ERK1/2 and chemotaxis are largely reduced in chimeras comprising the second intracellular domain of CXCR5, although coupling to inhibitory G proteins is retained in all chimeric receptors. In summary, these data characterize the contribution of the intracellular domains of CXCR5 to receptor signaling, thereby disclosing unique structural requirements that modulate G protein coupling by the receptor.  相似文献   

18.
In the present study, we used the human chemokine receptors CXCR1 and CXCR2 as a model system for the study of intracellular cross-talk between two closely related G protein-coupled receptors (GPCR). In cells expressing either CXCR1 or CXCR2, exposure to the CXCL8 ligand resulted in prominent reduction in cell surface expression of the receptors. We have shown previously that the reduction in cell surface expression of CXCR1 and CXCR2, to be termed herein "down-regulation", is significantly lower in cells expressing both receptors together. Now we show that reduced receptor down-regulation was specific to the CXCR1+CXCR2 pair. Also, CXCR2 carboxyl terminus phosphorylation sites were required for inducing inhibition of CXCR1 down-regulation, and vice versa. Accordingly, phosphorylation of CXCR2 carboxyl terminus domain was intact when expressed together with CXCR1. Moreover, specific carboxyl terminus phosphorylation sites on each of the wild type receptors protected them from more severe inhibition of down-regulation, induced by joint expression with the other receptor. When concomitantly expressed, CXCR1 and CXCR2 were impaired in recycling to the plasma membrane, despite their undergoing intact dephosphorylation. Overall, we show that cross-talk between two GPCR is manifested by impairment of their intracellular trafficking, primarily of ligand-induced down-regulation, via carboxyl terminus phosphorylation sites.  相似文献   

19.
Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4   总被引:35,自引:0,他引:35  
This study was undertaken to demonstrate the unique specificity of the chemokine receptor CXCR4 antagonist AMD3100. Calcium flux assays with selected chemokine/cell combinations, affording distinct chemokine receptor specificities, revealed no interaction of AMD3100 with any of the chemokine receptors CXCR1 through CXCR3, or CCR1 through CCR9. In contrast, AMD3100 potently inhibited CXCR4-mediated calcium signaling and chemotaxis in a concentration-dependent manner in different cell types. Also, AMD3100 inhibited stromal cell-derived factor (SDF)-1-induced endocytosis of CXCR4, but did not affect phorbol ester-induced receptor internalization. Importantly, AMD3100 by itself was unable to elicit intracellular calcium fluxes, to induce chemotaxis, or to trigger CXCR4 internalization, indicating that the compound does not act as a CXCR4 agonist. Specific small-molecule CXCR4 antagonists such as AMD3100 may play an important role in the treatment of human immunodeficiency virus infections and many other pathological processes that are dependent on SDF-1/CXCR4 interactions (e.g. rheumatoid arthritis, atherosclerosis, asthma and breast cancer metastasis).  相似文献   

20.
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号