首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Applications in bioacoustics and its sister discipline ecoacoustics have increased exponentially over the last decade. However, despite knowledge about aquatic bioacoustics dating back to the times of Aristotle and a vast amount of background literature to draw upon, freshwater applications of ecoacoustics have been lagging to date.
  2. In this special issue, we present nine studies that deal with underwater acoustics, plus three acoustic studies on water-dependent birds and frogs. Topics include automatic detection of freshwater organisms by their calls, quantifying habitat change by analysing entire soundscapes, and detecting change in behaviour when organisms are exposed to noise.
  3. We identify six major challenges and review progress through this special issue. Challenges include characterisation of sounds, accessibility of archived sounds as well as improving automated analysis methods. Study design considerations include characterisation analysis challenges of spatial and temporal variation. The final key challenge is the so far largely understudied link between ecological condition and underwater sound.
  4. We hope that this special issue will raise awareness about underwater soundscapes as a survey tool. With a diverse array of field and analysis tools, this issue can act as a manual for future monitoring applications that will hopefully foster further advances in the field.
  相似文献   

2.
Hydrological connectivity regulates the structure and function of Amazonian freshwater ecosystems and the provisioning of services that sustain local populations. This connectivity is increasingly being disrupted by the construction of dams, mining, land‐cover changes, and global climate change. This review analyzes these drivers of degradation, evaluates their impacts on hydrological connectivity, and identifies policy deficiencies that hinder freshwater ecosystem protection. There are 154 large hydroelectric dams in operation today, and 21 dams under construction. The current trajectory of dam construction will leave only three free‐flowing tributaries in the next few decades if all 277 planned dams are completed. Land‐cover changes driven by mining, dam and road construction, agriculture and cattle ranching have already affected ~20% of the Basin and up to ~50% of riparian forests in some regions. Global climate change will likely exacerbate these impacts by creating warmer and dryer conditions, with less predictable rainfall and more extreme events (e.g., droughts and floods). The resulting hydrological alterations are rapidly degrading freshwater ecosystems, both independently and via complex feedbacks and synergistic interactions. The ecosystem impacts include biodiversity loss, warmer stream temperatures, stronger and more frequent floodplain fires, and changes to biogeochemical cycles, transport of organic and inorganic materials, and freshwater community structure and function. The impacts also include reductions in water quality, fish yields, and availability of water for navigation, power generation, and human use. This degradation of Amazonian freshwater ecosystems cannot be curbed presently because existing policies are inconsistent across the Basin, ignore cumulative effects, and overlook the hydrological connectivity of freshwater ecosystems. Maintaining the integrity of these freshwater ecosystems requires a basinwide research and policy framework to understand and manage hydrological connectivity across multiple spatial scales and jurisdictional boundaries.  相似文献   

3.
The role of animals in modulating nutrient cycling [hereafter, consumer‐driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973–2002 to 7.3 per year during 2003–2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal‐mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non‐CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco‐evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem‐level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems.  相似文献   

4.
China is one of the countries in the world with therichest species biodiversityinfreshwater ecosystem.How-ever,duetothe rapid economic growthandthe continuingincrease of human disturbances and destructions of aquatichabitats,the biodiversity of freshwater ecosystemsis dras-tically declining.Waterbodies become more and more“deserted”of sensitive species.Water areas are reduced,fragmentized,and changed in their hydrodynamics(i.e.damming),causing changes in sedimentation and otherchanges.Forinstance,the area o...  相似文献   

5.
The effects of three groups of chemicals, heavy metals, pesticides and phenolics, on alkaline phosphatase activity of intact Chlorella vulgaris cells were investigated. There was a marked inhibitory effect of heavy metals and a slight one due to phenolics, but the pesticides tested showed no effect. In order to detect heavy metals in freshwater ecosystems, we propose a dialysis system, which can be placed in the field and then provide early warning signals of toxicity. This phosphatase inhibition test is recommended the first stage of an enzymatic screening system for chemical pollution in water.  相似文献   

6.
7.
A review of the modern state of knowledge of zoosporic fungi in freshwater plankton and benthos is given. The effects of abiotic factors upon the distribution and development of these fungi are discussed, along with the problem of the role zoosporic fungi play in lake ecosystems.  相似文献   

8.
9.
10.
Using14C cholesterol as a marker a positive correlation was established between the amount of oil (a chlorinated n-alkane containing 43–46% chlorine, ‘cereclor S45’) picked up by an adult tsetse fly exposed by tarsal contact to a treated surface and the duration of such exposure. Only a poor uptake was achieved from netting surfaces treated with less than 50% oil in acetone. Terylene netting treated with radioactive pyriproxyfen, [1-methyl-2-(4-phenoxyphenoxy)ethoxy] pyridine, dissolved in cereclor, was exposed in the field for a year. After 9 months 20% of the original radioactivity remained and was shown to be 95% authentic pyriproxyfen. Brief tarsal contact (up to 5 seconds) with such netting, by adult females ofGlossina morsitans morsitans Westwood, reduced the viability of their offspring to 28–43% of untreated control values. The effect was greatest in the reproductive cycle immediately following contact. Between 10 and 12 months after treatment of the fabric the radioactivity fell to only 7% of the original level but was associated mainly (>80%) with intact pyriproxyfen. Exposure of female flies to this netting resulted in a positive correlation between the duration of exposure and the extent of suppression of offspring viability, such that 2 min was sufficient to reduce offspring viability to zero for the life of the female. Traps or targets impregnated with conventional formulations of pyrethroids to kill tsetse would have lost all their activity by this time. Results are discussed in terms of the prospects for using pyriproxyfen-treated targets to sterilize female tsetse directly and also indirectly through the contamination of males prior to mating through contact with such targets.  相似文献   

11.
Role of fungi in freshwater ecosystems   总被引:7,自引:0,他引:7  
There are more than 600 species of freshwater fungi with a greater number known from temperate, as compared to tropical, regions. Three main groups can be considered which include Ingoldian fungi, aquatic ascomycetes and non-Ingoldian hyphomycetes, chytrids and, oomycetes. The fungi occurring in lentic habitats mostly differ from those occurring in lotic habitats. Although there is no comprehensive work dealing with the biogeography of all groups of freshwater fungi, their distribution probably follows that of Ingoldian fungi, which are either cosmopolitan, restricted to pantemperate or pantropical regions, or in a few cases, have a restricted distribution. Freshwater fungi are thought to have evolved from terrestrial ancestors. Many species are clearly adapted to life in freshwater as their propagules have specialised aquatic dispersal abilities. Freshwater fungi are involved in the decay of wood and leafy material and also cause diseases of plants and animals. These areas are briefly reviewed. Gaps in our knowledge of freshwater fungi are discussed and areas in need of research are suggested.  相似文献   

12.

Aim

Refugia play a key ecological role for the persistence of biodiversity in areas subject to natural or human disturbance. Temporary freshwater ecosystems regularly experience dry periods, which constrain the availability of suitable habitats. Current and future threats (e.g. water extraction and climate change) can exacerbate the negative effects of drying conditions. This could compromise the persistence of a large proportion of global freshwater biodiversity, so the identification and protection of refugia seems an urgent task.

Location

Northern Australia.

Methods

We demonstrate a new approach to identify and prioritize the selection of refugia and apply it to the conservation of freshwater fish biodiversity. We identified refugia using estimates of water residency time derived from satellite imagery and used a systematic approach to prioritize areas that provide all the fish species inhabiting the catchment with access to a minimum number of refugia while maximizing the length of stream potentially accessible for recolonization after the dry period. These priority refugia were locked into a broader systematic conservation plan with area‐based targets and direct connectivity. We accounted for current threats during the prioritization process to ensure degraded areas were avoided, thus maximizing the ecological role of priority refugia.

Results

Priority refugia were located in lowland reaches, where the incidence of threats was less prominent in our study area and headwaters in good condition. An additional set of 106 planning units (6500 km2) were required to represent 10% of each species' distribution in the broad conservation plan. A hierarchical management zoning scheme was applied to demonstrate how these key ecological features could be effectively protected from the major threats caused by aquatic invasive species and grazing.

Main conclusions

This new approach to identifying priority refugia and incorporating them into the conservation planning process in a systematic way would help enhance the resilience of freshwater biodiversity in temporary systems.
  相似文献   

13.
Persistence of environmental DNA in freshwater ecosystems   总被引:1,自引:0,他引:1  
The precise knowledge of species distribution is a key step in conservation biology. However, species detection can be extremely difficult in many environments, specific life stages and in populations at very low density. The aim of this study was to improve the knowledge on DNA persistence in water in order to confirm the presence of the focus species in freshwater ecosystems. Aquatic vertebrates (fish: Siberian sturgeon and amphibian: Bullfrog tadpoles) were used as target species. In control conditions (tanks) and in the field (ponds), the DNA detectability decreases with time after the removal of the species source of DNA. DNA was detectable for less than one month in both conditions. The density of individuals also influences the dynamics of DNA detectability in water samples. The dynamics of detectability reflects the persistence of DNA fragments in freshwater ecosystems. The short time persistence of detectable amounts of DNA opens perspectives in conservation biology, by allowing access to the presence or absence of species e.g. rare, secretive, potentially invasive, or at low density. This knowledge of DNA persistence will greatly influence planning of biodiversity inventories and biosecurity surveys.  相似文献   

14.
15.
Background, aim, and scope  Characterization factors for ecotoxicity in the Life Cycle Impact Assessment (LCIA) are used to convert emissions into ecotoxicological impacts. Deriving them involves a fate and an effect analysis step. The fate factor quantifies the change in environmental concentration per unit of emission, while the effect factor quantifies the change in impact on the ecosystem per unit of environmental concentration. This paper calculates freshwater ecotoxicological effect factors for 397 pesticides belonging to 11 pesticide-specific toxic modes of action (TMoA), such as acetylcholinesterase inhibition and photosynthesis inhibition. Moreover, uncertainties in the effect factors due to uncertain background concentrations and due to limited toxicity data are quantified. Methods  To calculate median ecotoxicological effect factors (EEFs), toxic pressure assessments were made, based on the species sensitivity distribution—and the multisubstance potentially affected fraction—concept. The EEF quantifies an estimate of the fraction of species that is probably affected due to a marginal change in concentration of a pesticide. EEFs were divided into a TMoA-specific and a chemical-specific part, which were calculated on the basis of physicochemical properties, emissions, and toxicity data. Propagation of parameter uncertainty in the EEFs and the TMoA- and chemical-specific parts was quantified by Monte Carlo simulation and results were reported as 90% confidence intervals. Results  Median EEFs range from 2·10−3 to 7·106 l/g. Uncertainty in the TMoA-specific part is dominated by uncertainty in the TMoA-specific spread in species sensitivity and by uncertainty in the effective toxicity of a TMoA. Uncertainty in the chemical-specific part of the EEFs depends on the number of species for which toxicity data are available to calculate average toxicity (n s) and ranges from a median uncertainty of 2.6 orders of magnitude for n s = 2 to one order of magnitude for n s ≥ 4. The TMoA-specific effect factor for systemic fungicides shows the largest uncertainty range. For seven TMoAs, uncertainty ranges of the TMoA-specific effect factor are less than two orders of magnitude. For the other four TMoAs, the EEF uncertainty range is between two and eight orders of magnitude. For the chemical-specific part of the EEFs, we found that variation in uncertainty readily decreases for pesticides for which toxicity data are available for at least three species. Discussion  The same parameters that contributed most to uncertainty were found for pesticides as were found before for high-production-volume chemicals. However, uncertainty in concentrations of pesticides was lower. TMoA-specific factors obtained with the applied nonlinear method differ up to nine orders of magnitude from the factor of 0.5, which is used in the linear method. With the applied method, a distinction in EEFs can be made among different TMoAs. Conclusions   Ecotoxicological effect factors are presented, including overviews of their uncertainty ranges and the main contributors to uncertainty. The applied nonlinear method provides the possibility to quantify parameter uncertainty in the TMoA-specific part of the ecotoxicological effect factor, which is helpful to get more insight in how uncertainty in ecotoxicological characterization factors can be reduced. Recommendations and perspectives  The calculated uncertainty ranges can be included in life cycle assessment (LCA) case studies, which allows for better interpretation of LCA results obtained with the EEFs. To put the uncertainty in effect factors into perspective within LCIA, more information on the uncertainty in fate factors should be derived. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large‐pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2–3 min per 2‐L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species.  相似文献   

17.
18.
Ecological monitoring contributes to the understanding of complex ecosystem functions. The diets of fish reflect the surrounding environment and habitats and may, therefore, act as useful integrating indicators of environmental status. It is, however, often difficult to visually identify items in gut contents to species level due to digestion of soft‐bodied prey beyond visual recognition, but new tools rendering this possible are now becoming available. We used a molecular approach to determine the species identities of consumed diet items of an introduced generalist feeder, brown trout (Salmo trutta), in 10 Tasmanian lakes and compared the results with those obtained from visual quantification of stomach contents. We obtained 44 unique taxa (OTUs) belonging to five phyla, including seven classes, using the barcode of life approach from cytochrome oxidase I (COI). Compared with visual quantification, DNA analysis showed greater accuracy, yielding a 1.4‐fold higher number of OTUs. Rarefaction curve analysis showed saturation of visually inspected taxa, while the curves from the DNA barcode did not saturate. The OTUs with the highest proportions of haplotypes were the families of terrestrial insects Formicidae, Chrysomelidae, and Torbidae and the freshwater Chironomidae. Haplotype occurrence per lake was negatively correlated with lake depth and transparency. Nearly all haplotypes were only found in one fish gut from a single lake. Our results indicate that DNA barcoding of fish diets is a useful and complementary method for discovering hidden biodiversity.  相似文献   

19.
The accelerating rate of global change has focused attention on the cumulative impacts of novel and extreme environmental changes (i.e. stressors), especially in marine ecosystems. As integrators of local catchment and regional processes, freshwater ecosystems are also ranked highly sensitive to the net effects of multiple stressors, yet there has not been a large‐scale quantitative synthesis. We analysed data from 88 papers including 286 responses of freshwater ecosystems to paired stressors and discovered that overall, their cumulative mean effect size was less than the sum of their single effects (i.e. an antagonistic interaction). Net effects of dual stressors on diversity and functional performance response metrics were additive and antagonistic, respectively. Across individual studies, a simple vote‐counting method revealed that the net effects of stressor pairs were frequently more antagonistic (41%) than synergistic (28%), additive (16%) or reversed (15%). Here, we define a reversal as occurring when the net impact of two stressors is in the opposite direction (negative or positive) from that of the sum of their single effects. While warming paired with nutrification resulted in additive net effects, the overall mean net effect of warming combined with a second stressor was antagonistic. Most importantly, the mean net effects across all stressor pairs and response metrics were consistently antagonistic or additive, contrasting the greater prevalence of reported synergies in marine systems. Here, a possible explanation for more antagonistic responses by freshwater biota to stressors is that the inherent greater environmental variability of smaller aquatic ecosystems fosters greater potential for acclimation and co‐adaptation to multiple stressors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号