首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

3.
4.
In this study, we describe novel functions of the anti-apoptotic Bcl-2 family proteins. Bcl-x(L) and E1B-19K were found to inhibit p53-induced irreversible growth arrest and senescence, but not to inhibit transient growth arrest, implying that Bcl-x(L) and E1B-19K are specifically involved in senescence without participating in growth arrest. We provide several lines of evidences showing that the functions of Bcl-x(L) and E1B-19K to prevent generation of reactive oxygen species (ROS) are important to inhibit senescence induction. First, we found that that ROS are increased during p53-induced senescence. Moreover, Bcl-x(L) and E1B-19K inhibit this p53-induced ROS generation. Second, antioxidants prevent the induction of senescence and ROS by p53, but not the persistence of the senescence phenotype. Third, the anti-senescence functions of Bcl-x(L) and E1B-19K were suppressed by adding exogenous ROS. These results suggest that Bcl-x(L) and E1B-19K inhibit senescence induction by preventing ROS generation. Furthermore, p38 kinase was found to be activated during p53-induced senescence, but not in cells expressing Bcl-x(L) or E1B-19K, or in cells treated with anti-oxidants. Consistently, a chemical inhibitor of p38 kinase, SB203580, was found to inhibit p53-induced senescence, but only when treated before the cellular commitment to senescence, implying that p38 kinase is necessary for senescence induction. Therefore, Bcl-x(L) and E1B-19K inhibit p53-induced senescence by preventing ROS generation, which in turn leads to the activation of p38 kinase. These results also suggest that the oncogenic potential of Bcl-2 is due to its ability to inhibit senescence as well as apoptosis.  相似文献   

5.
The induction of senescence, an irreversible growth arrest, in cancer cells is regarded as a mean to halt tumor progression. The phytoalexin resveratrol (RV) is known to possess a variety of cancer-preventive, -therapeutic, and -chemosensitizing properties. We report here that chronic treatment with RV in a subapoptotic concentration induces senescence-like growth arrest in tumor cells. In contrast to the widely accepted antioxidant property of RV, we demonstrate that one causative stimulus for senescence induction by chronic RV is an increased level of reactive oxygen species (ROS). The ROS formed upon RV exposure include hydrogen peroxide and superoxide and originate largely from mitochondria. Consistently, co-incubation with the antioxidant N-acetyl cysteine interfered with RV-mediated reactivation of the senescence program. Molecular mediators on the way from increased ROS levels to the observed growth arrest include p38 MAPK, p53, and p21. Moreover, we provide evidence that RV-initiated replication stress, apparent by activation of the ataxia telangiectasia-mutated kinase pathway, is associated with increased ROS levels and senescence induction. This is the first report linking cell cycle effects with a pro-oxidant and pro-senescent effect of RV in cancer cells.  相似文献   

6.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

7.
Excessive reactive oxygen species (ROS) play a key role in the pathogenesis of diabetic nephropathy. The thioredoxin (TRX) system, a major thiol antioxidant system, regulates the reduction of intracellular ROS. Here we show that high glucose (HG) inhibits TRX ROS-scavenging function through p38 mitogen-activated protein kinase (MAPK)-mediated induction of thioredoxin interacting protein (TXNIP) in mouse mesangial cells (MMCs). Knockdown of TXNIP in MMCs reversed HG-induced reduction of TRX activity and inhibited HG-induced activation of p38 MAPK and increased synthesis of TGF-β1 and fibronectin. These data suggest that HG-induced overexpression of TXNIP in MMCs, which may be via the p38 MAPK pathway.  相似文献   

8.
9.
The Na+/H+ exchanger (NHE) becomes activated by hyperosmolar stress, thereby contributing to cell volume regulation. The signaling pathway(s) responsible for the shrinkage-induced activation of NHE, however, remain unknown. A family of mitogen-activated protein kinases (MAPK), encompassing p42/p44 Erk, p38 MAPK and SAPK, has been implicated in a variety of cellular responses to changes in osmolarity. We therefore investigated whether these kinases similarly signal the hyperosmotic activation of NHE. The time course and osmolyte concentration dependence of hypertonic activation of NHE and of the three sub-families of MAPK were compared in U937 cells. The temporal course and dependence on osmolarity of Erk and p38 MAPK activation were found to be similar to that of NHE stimulation. However, while pretreatment of U937 cells with the kinase inhibitors PD98059 and SB203580 abrogated the osmotic activation of Erk and p38 MAPK, respectively, it did not prevent the associated stimulation of NHE. Thus, Erk1/2 and/or p38 MAPK are unlikely to mediate the osmotic regulation of NHE. The kinetics of NHE activation by hyperosmolarity appeared to precede SAPK activation. In addition, hyperosmotic activation of NHE persisted in mouse embryonic fibroblasts lacking SEK1/MKK4, an upstream activator of SAPK. Moreover, shrinkage-induced activation of NHE still occurred in COS-7 cells that were transiently transfected with a dominant-negative form of SEK1/MKK4 (SEK1/MKK4-A/L) that is expected to inhibit other isoforms of SEK as well. Together, these results demonstrate that the stimulation of NHE and the activation of Erk, p38 MAPK and SAPK are parallel but independent events. Received: 27 November 2000/Revised: 20 March 2001  相似文献   

10.
PRAK is essential for ras-induced senescence and tumor suppression   总被引:1,自引:0,他引:1  
Sun P  Yoshizuka N  New L  Moser BA  Li Y  Liao R  Xie C  Chen J  Deng Q  Yamout M  Dong MQ  Frangou CG  Yates JR  Wright PE  Han J 《Cell》2007,128(2):295-308
Like apoptosis, oncogene-induced senescence is a barrier to tumor development. However, relatively little is known about the signaling pathways mediating the senescence response. p38-regulated/activated protein kinase (PRAK) is a p38 MAPK substrate whose physiological functions are poorly understood. Here we describe a role for PRAK in tumor suppression by demonstrating that PRAK mediates senescence upon activation by p38 in response to oncogenic ras. PRAK deficiency in mice enhances DMBA-induced skin carcinogenesis, coinciding with compromised senescence induction. In primary cells, inactivation of PRAK prevents senescence and promotes oncogenic transformation. Furthermore, we show that PRAK activates p53 by direct phosphorylation. We propose that phosphorylation of p53 by PRAK following activation of p38 MAPK by ras plays an important role in ras-induced senescence and tumor suppression.  相似文献   

11.
Fragile histidine trail (FHIT) is a tumor suppressor in response to DNA damage which has been deleted in various tumors. However, the signaling mechanisms and interactions of FHIT with regard to apoptotic proteins including p53 and p38 in the DNA damage-induced apoptosis are not well described. In the present study, we used etoposide-induced DNA damage in MCF-7 as a model to address these crosstalks. The time course study showed that the expression of FHIT, p53, and p38MAPK started after 1 hour following etoposide treatment. FHIT overexpression led to increase p53 expression, p38 activation, and augmented apoptosis following etoposide-induced DNA damage compared to wild-type cells. However, FHIT knockdown blocked p53 expression, delayed p38 activation, and completely inhibited etoposide-induced apoptosis. Inhibition of p38 activity prevented induction of p53, FHIT, and apoptosis in this model. Thus, activation of p38 upon etoposide treatment leads to increase in FHIT and p53 expression. In p53 knockdown MCF-7, the FHIT induction was hampered but p38 activation was induced in lower doses of etoposide. In p53 knockdown cells, inhibition of p38 induced FHIT expression and apoptosis. Our data demonstrated that the exposure of MCF-7 cells to etoposide increases apoptosis through a mechanism involving the activation of the p38-FHIT-p53 pathway. Moreover, our findings suggest signaling interaction for these pathways may represent a promising therapy for breast cancer.  相似文献   

12.
In addition to replicative senescence, normal diploid fibroblasts undergo stress-induced premature senescence (SIPS) in response to DNA damage caused by oxidative stress or ionizing radiation (IR). SIPS is not prevented by telomere elongation, indicating that, unlike replicative senescence, it is triggered by nonspecific genome-wide DNA damage rather than by telomere shortening. ATM, the product of the gene mutated in individuals with ataxia telangiectasia (AT), plays a central role in cell cycle arrest in response to DNA damage. Whether ATM also mediates signaling that leads to SIPS was investigated with the use of normal and AT fibroblasts stably transfected with an expression vector for the catalytic subunit of human telomerase (hTERT). Expression of hTERT in AT fibroblasts resulted in telomere elongation and prevented premature replicative senescence, but it did not rescue the defect in G(1) checkpoint activation or the hypersensitivity of the cells to IR. Despite these remaining defects in the DNA damage response, hTERT-expressing AT fibroblasts exhibited characteristics of senescence on exposure to IR or H(2)O(2) in such a manner that triggers SIPS in normal fibroblasts. These characteristics included the adoption of an enlarged and flattened morphology, positive staining for senescence-associated beta-galactosidase activity, termination of DNA synthesis, and accumulation of p53, p21(WAF1), and p16(INK4A). The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which mediates signaling that leads to senescence, was also detected in both IR- or H(2)O(2)-treated AT and normal fibroblasts expressing hTERT. These results suggest that the ATM-dependent signaling pathway triggered by DNA damage is dispensable for activation of p38 MAPK and SIPS in response to IR or oxidative stress.  相似文献   

13.
The activation of p53 is a guardian mechanism to protect primary cells from malignant transformation; however, the details of the activation of p53 by oncogenic stress are still incomplete. In this report we show that in Gadd45a(-/-) mouse embryo fibroblasts (MEF), overexpression of H-ras activates extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) but not p38 kinase, and this correlates with the loss of H-ras-induced cell cycle arrest (premature senescence). Inhibition of p38 mitogen-activated protein kinase (MAPK) activation correlated with the deregulation of p53 activation, and both a p38 MAPK chemical inhibitor and the expression of a dominant-negative p38alpha inhibited p53 activation in the presence of H-ras in wild-type MEF. p38, but not ERK or JNK, was found in a complex with Gadd45 proteins. The region of interaction was mapped to amino acids 71 to 96, and the central portion (amino acids 71 to 124) of Gadd45a was required for p38 MAPK activation in the presence of H-ras. Our results indicate that this Gadd45/p38 pathway plays an important role in preventing oncogene-induced growth at least in part by regulating the p53 tumor suppressor.  相似文献   

14.
There was an outbreak of urinary stones associated with consumption of melamine-tainted milk products in 2008 in China, leading to serious illness of many infants and even death. We have recently demonstrated that melamine causes oxidative damage on the NRK (normal rat kidney)-52e cells. The objective of this study was to explore the cellular signalling pathway that mediates the cell apoptosis induced by melamine in the NRK-52e cells. Fluorescence microscope showed that melamine enhanced intracellular ROS (reactive oxygen species) levels of the NRK-52e cells. AO/EB (acridine orange/ethidium bromide) staining and flow cytometry revealed that melamine increased apoptotic and necrotic percentages of the NRK-52e cells in a dose-dependent manner. Notably, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assays and flow cytometry displayed that SB203580, an inhibitor for p38 MAPK (mitogen-activated protein kinase) pathway, increased the proliferation of the NRK-52e cells and reduced the apoptotic and necrotic percentages of the NRK-52e cells. Western blots further demonstrated that p38 phosphorylation was activated by melamine in the NRK-52e cells and inhibitor SB203580 blocked the increase of p38 phosphorylation induced by melamine. Together, these results suggested that melamine causes apoptosis of the NRK-52e cells via excessive intracellular ROS and the activation of p38 MAPK pathway. This study thus offers a novel insight into molecular mechanisms by which melamine has adverse cytotoxicity on renal tubular epithelial cells.  相似文献   

15.
Antioxidants are able to inhibit inflammatory gene expression in response to lipopolysaccharide via down-regulating generation of intracellular reactive oxygen species (ROS) as second messengers. The effect of manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a synthetic metalloporphyrin with antioxidant activity, on tumor necrosis factor (TNF)-alpha production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells was examined. MnTBAP prevented the generation of intracellular ROS in lipopolysaccharide-stimulated RAW 264.7 cells and further inhibited lipopolysaccharide-induced TNF-alpha production. MnTBAP exclusively prevented the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK/JNK) whereas it did not affect the phosphorylation and activation of nuclear factor-kappaB and extracellular signal regulated kinase 1/2. MnTBAP was suggested to inhibit lipopolysaccharide-induced TNF-alpha production by the prevention of intracellular ROS generation and subsequent inactivation of p38 MAPK and SAPK/JNK.  相似文献   

16.
In primary mammalian cells, oncogenic ras induces premature senescence, depending on an active MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. It has been unclear how activation of the mitogenic MEK-ERK pathway by ras can confer growth inhibition. In this study, we have found that the stress-activated MAPK, p38, is also activated during the onset of ras-induced senescence in primary human fibroblasts. Constitutive activation of p38 by active MKK3 or MKK6 induces senescence. Oncogenic ras fails to provoke senescence when p38 activity is inhibited, suggesting that p38 activation is essential for ras-induced senescence. Furthermore, we have demonstrated that p38 activity is stimulated by ras as a result of an activated MEK-ERK pathway. Following activation of MEK and ERK, expression of oncogenic ras leads to the accumulation of active MKK3/6 and p38 activation in a MEK-dependent fashion and subsequently induces senescence. Active MEK1 induces the same set of changes and provokes senescence relying on active p38. Therefore, oncogenic ras provokes premature senescence by sequentially activating the MEK-ERK and MKK3/6-p38 pathways in normal, primary cells. These studies have defined the molecular events within the ras signaling cascade that lead to premature senescence and, thus, have provided new insights into how ras confers oncogenic transformation in primary cells.  相似文献   

17.
The p38 MAPK pathway controls critical premitochondrial events culminating in apoptosis of UVB-irradiated human keratinocytes, but the upstream mediators of this stress signal are not completely defined. This study shows that in human keratinocytes exposed to UVB the generation of reactive oxygen species (ROS) acts as a mediator of apoptosis signal regulating kinase-1 (Ask-1), a redox-sensitive mitogen-activated protein kinase kinase kinase (MAP3K) regulating p38 MAPK and JNK cascades. The NADPH oxidase antagonist diphenylene iodonium chloride and the EGFR inhibitor AG1487 prevent UVB-mediated ROS generation, the activation of the Ask-1-p38 MAPK stress response pathway, and apoptosis, evidencing the link existing between the early plasma membrane-generated ROS and the activation of a lethal cascade initiated by Ask-1. Consistent with this, Ask-1 overexpression considerably sensitizes keratinocytes to UVB-induced mitochondrial apoptosis. Although the JNK pathway is also stimulated after UVB, the killing effect of Ask-1 overexpression is reverted by p38 MAPK inhibition, suggesting that Ask-1 exerts its lethal effects mainly through the p38 MAPK pathway. Moreover, p38alpha(-/-) murine embryonic fibroblasts are protected from UVB-induced apoptosis even if JNK activation is fully preserved. These results argue for an important role of the UVB-generated ROS as mediators of the Ask-1-p38 MAPK pathway that, by culminating in apoptosis, restrains the propagation of potentially mutagenic keratinocytes.  相似文献   

18.
In macrophages, L-arginine can be used by NO synthase and arginase to form NO and urea, respectively. Therefore, activation of arginase may be an effective mechanism for regulating NO production in macrophages through substrate competition. Here, we examined whether IL-13 up-regulates arginase and thus reduces NO production from LPS-activated macrophages. The signaling molecules involved in IL-13-induced arginase activation were also determined. Results showed that IL-13 increased arginase activity through de novo synthesis of the arginase I mRNA and protein. The activation of arginase was preceded by a transient increase in intracellular cAMP, tyrosine kinase phosphorylation, and p38 mitogen-activated protein kinase (MAPK) activation. Exogenous cAMP also increased arginase activity and enhanced the effect of IL-13 on arginase induction. The induction of arginase was abolished by a protein kinase A (PKA) inhibitor, KT5720, and was down-regulated by tyrosine kinase inhibitors and a p38 MAPK inhibitor, SB203580. However, inhibition of p38 MAPK had no effect on either the IL-13-increased intracellular cAMP or the exogenous cAMP-induced arginase activation, suggesting that p38 MAPK signaling is parallel to the cAMP/PKA pathway. Furthermore, the induction of arginase was insensitive to the protein kinase C and p44/p42 MAPK kinase inhibitors. Finally, IL-13 significantly inhibited NO production from LPS-activated macrophages, and this effect was reversed by an arginase inhibitor, L-norvaline. Together, these data demonstrate for the first time that IL-13 down-regulates NO production through arginase induction via cAMP/PKA, tyrosine kinase, and p38 MAPK signalings and underline the importance of arginase in the immunosuppressive activity of IL-13 in activated macrophages.  相似文献   

19.
p38MAPK介导的胶质细胞iNOS的转录激活机制   总被引:6,自引:2,他引:4  
丝裂原激活蛋白激酶(MAPK)酶级联反应系统参与胶质细胞中iNOS的合成.通过瞬时转染p38MAPK途径中上游激酶,MAPK激酶3(MKK3)和MAPK激酶6 (MKK6 )表达质粒,进一步了解p38MAPK级联传导信号系统调节iNOS基因在胶质细胞中的转录激活机制.MKK3或MKK6表达质粒与接有荧光素酶(luciferase ,Luc)的大鼠iNOS启动基因质粒(iNOS Luc)联合转染C6星形胶质细胞株引起iNOS Luc的激活,并且使细胞因子诱导的iNOSmRNA的表达增强.这两种效应都能够被p38MAPK抑制剂SB2 0 35 80所抑制.MKK3 6也可以诱导核因子κB(NFκB Luc)依赖的转录活性.这些分子水平的研究结果为p38MAPK信号级联传导途径在调节大鼠胶质细胞中iNOS基因转录激活中的重要作用,包括转录因子NFκB的作用提供了证据.通过阻断iNOS表达或NO的生成,抑制细胞炎症发生,为防治神经细胞炎症反应性疾病提供实验依据.  相似文献   

20.
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号