首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The directional transport of the plant hormone auxin is a unique process mediating a wide variety of developmental processes. Auxin movement between cells depends on AUX1/LAX, PGP and PIN protein families that mediate auxin transport across the plasma membrane. The directionality of auxin flow within tissues is largely determined by polar, subcellular localization of PIN auxin efflux carriers. PIN proteins undergo rapid subcellular dynamics that is important for the process of auxin transport and its directionality. Furthermore, various environmental and endogenous signals can modulate trafficking and polarity of PIN proteins and by this mechanism change auxin distribution. Thus, the subcellular dynamics of auxin transport proteins represents an important interface between cellular processes and development of the whole plant. This review summarizes our recent contributions to the field of PIN trafficking and auxin transport regulation.  相似文献   

2.
Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.  相似文献   

3.
4.
Coordination of cell and tissue polarity commonly involves directional signaling. In the Arabidopsis root epidermis, cell polarity is revealed by basal, root tip-oriented, hair outgrowth from hair-forming cells (trichoblasts). The plant hormone auxin displays polar movements and accumulates at maximum concentration in the root tip. The application of polar auxin transport inhibitors evokes changes in trichoblast polarity only at high concentrations and after long-term application. Thus, it remains open whether components of the auxin transport machinery mediate establishment of trichoblast polarity. Here we report that the presumptive auxin influx carrier AUX1 contributes to apical-basal hair cell polarity. AUX1 function is required for polarity changes induced by exogenous application of the auxin 2,4-D, a preferential influx carrier substrate. Similar to aux1 mutants, the vesicle trafficking inhibitor brefeldin A (BFA) interferes with polar hair initiation, and AUX1 function is required for BFA-mediated polarity changes. Consistently, BFA inhibits membrane trafficking of AUX1, trichoblast hyperpolarization induced by 2,4-D, and alters the distal auxin maximum. Our results identify AUX1 as one component of a novel BFA-sensitive auxin transport pathway polarizing cells toward a hormone maximum.  相似文献   

5.
Auxin transport at least correlates to the three gene families: efflux carriers PIN-formed (PIN), p-glycoprotein (PGP), and influx carrier auxin resistant 1/like aux1(AUX/LAX) in Arabidopsis thaliana. In monocotyledon Sorghum bicolor, the biological function of these genes retains unclear. Our previous study reported that the member analysis, organ-specific expression and expression profiles of the auxin transporter PIN, PGP and AUX/LAX gene families in Sorghum bicolor under IAA, brassinosteroid, polar auxin transport inhibitors and abiotic stresses. Here we further supply the prediction of subcellular localization of SbPIN, SbLAX and SbPGP proteins and discuss the potential relationship between the subcellular localization and stress response. The predicted results showed that the most of SbPIN, SbLAX and SbPGP proteins are localized to the plasma membrane, except few localized to vacuolar membrane and endoplasmic reticulum. This data set provides novel information for investigation of auxin transporters in Sorghum bicolor.  相似文献   

6.
7.
ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis   总被引:2,自引:0,他引:2  
Auxin transport is mediated at the cellular level by three independent mechanisms that are characterised by the PIN-formed (PIN), P-glycoprotein (ABCB/PGP) and AUX/LAX transport proteins. The PIN and ABCB transport proteins, best represented by PIN1 and ABCB19 (PGP19), have been shown to coordinately regulate auxin efflux. When PIN1 and ABCB19 coincide on the plasma membrane, their interaction enhances the rate and specificity of auxin efflux and the dynamic cycling of PIN1 is reduced. However, ABCB19 function is not regulated by the dynamic cellular trafficking mechanisms that regulate PIN1 in apical tissues, as localisation of ABCB19 on the plasma membrane was not inhibited by short-term treatments with latrunculin B, oryzalin, brefeldin A (BFA) or wortmannin--all of which have been shown to alter PIN1 and/or PIN2 plasma membrane localisation. When taken up by endocytosis, the styryl dye FM4-64 labels diffuse rather than punctuate intracellular bodies in abcb19 (pgp19), and some aggregations of PIN1 induced by short-term BFA treatment did not disperse after BFA washout in abcb19. Although the subcellular localisations of ABCB19 and PIN1 in the reciprocal mutant backgrounds were like those in wild type, PIN1 plasma membrane localisation in abcb19 roots was more easily perturbed by the detergent Triton X-100, but not other non-ionic detergents. ABCB19 is stably associated with sterol/sphingolipid-enriched membrane fractions containing BIG/TIR3 and partitions into Triton X-100 detergent-resistant membrane (DRM) fractions. In the wild type, PIN1 was also present in DRMs, but was less abundant in abcb19 DRMs. These observations suggested a rationale for the observed lack of auxin transport activity when PIN1 is expressed in a non-plant heterologous system. PIN1 was therefore expressed in Schizosaccharomyces pombe, which has plant-like sterol-enriched microdomains, and catalysed auxin transport in these cells. These data suggest that ABCB19 stabilises PIN1 localisation at the plasma membrane in discrete cellular subdomains where PIN1 and ABCB19 expression overlaps.  相似文献   

8.
Sphingolipids are a class of structural membrane lipids involved in membrane trafficking and cell polarity. Functional analysis of the ceramide synthase family in Arabidopsis thaliana demonstrates the existence of two activities selective for the length of the acyl chains. Very-long-acyl-chain (C > 18 carbons) but not long-chain sphingolipids are essential for plant development. Reduction of very-long-chain fatty acid sphingolipid levels leads in particular to auxin-dependent inhibition of lateral root emergence that is associated with selective aggregation of the plasma membrane auxin carriers AUX1 and PIN1 in the cytosol. Defective targeting of polar auxin carriers is characterized by specific aggregation of Rab-A2(a)- and Rab-A1(e)-labeled early endosomes along the secretory pathway. These aggregates correlate with the accumulation of membrane structures and vesicle fragmentation in the cytosol. In conclusion, sphingolipids with very long acyl chains define a trafficking pathway with specific endomembrane compartments and polar auxin transport protein cargoes.  相似文献   

9.
Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.  相似文献   

10.
Phytohormone auxin plays an indispensable role in the plethora of plant developmental process starting from the cell division, and cell elongation to morphogenesis. Auxins are transported to different parts of the plant by different sophisticated transporter molecules known as ‘auxin transporters’.There are four auxin transporter families that have been reported so far in the plant kingdom which includes AUX/LAX (AUXIN-RESISTANT1–LIKES), PIN (PIN-FORMED, auxin efflux carriers), ABCB ((ATP-binding cassette-B (ABCB)/P-glycoprotein (PGP)) and PILS (PIN-Likes). Auxin influx and efflux carriers are distributed in a polar fashion in the plasma membrane whereas ABCB and PILS are present in a non-polar fashion. Other than AUX/LAX, other auxin transporters harbor N-and C-terminal conserved domains along with a variable hydrophilic loop in the transmembrane domain. The AUX/LAX, ABCB and PIN transporters mediate long distance auxin transport whereas PILS and PIN5 protein involved in intracellular auxin homeostasis.  相似文献   

11.
Auxin concentration gradients, established by polar transport of auxin, are essential for the establishment and maintenance of polar growth and morphological patterning. Three families of cellular transport proteins, PIN-formed (PIN), P-glycoprotein (ABCB/PGP), and AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX), can independently and co-ordinately transport auxin in plants. Regulation of these proteins involves intricate and co-ordinated cellular processes, including protein-protein interactions, vesicular trafficking, protein phosphorylation, ubiquitination, and stabilization of the transporter complexes on the plasma membrane.  相似文献   

12.
Development of plants and their adaptive capacity towards ever‐changing environmental conditions largely depend on the spatial distribution of the plant hormone auxin. At the cellular level, various internal and external signals are translated into specific changes in the polar, subcellular localization of auxin transporters from the PIN family thereby directing and redirecting the intercellular fluxes of auxin. The current model of polar targeting of PIN proteins towards different plasma membrane domains encompasses apolar secretion of newly synthesized PINs followed by endocytosis and recycling back to the plasma membrane in a polarized manner. In this review, we follow the subcellular march of the PINs and highlight the cellular and molecular mechanisms behind polar foraging and subcellular trafficking pathways. Also, the entry points for different signals and regulations including by auxin itself will be discussed within the context of morphological and developmental consequences of polar targeting and subcellular trafficking.  相似文献   

13.
生长素输出载体PIN家族研究进展   总被引:1,自引:0,他引:1  
林雨晴  齐艳华 《植物学报》2021,56(2):151-165
生长素极性运输调控植物的生长发育。生长素极性运输主要依赖3类转运蛋白: AUX/LAX、PIN和ABCB蛋白家族。生长素在细胞间流动的方向与PIN蛋白在细胞上的极性定位密切相关。PIN蛋白由1个中心亲水环和2个由中心亲水环隔开的疏水区组成。中心亲水环上含多个磷酸化位点,其为一些蛋白激酶的靶点。PIN蛋白受多方面调控,包...  相似文献   

14.
Polar auxin transport, which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers, mediates various processes of plant growth and development. Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein, GNOM. However, the mediation of auxin influx carrier recycling is poorly understood. Here, we report that overexpression of OsAGAP, an ARF-GTPase-activating protein in rice, stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1. AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption. Furthermore, OsAGAP is involved in actin cytoskeletal organization, and its overexpression tends to reduce the thickness and bundling of actin filaments. Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells, and was only slightly promoted when the actin filaments were completely disrupted by Lat B. Thus, we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.  相似文献   

15.
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.  相似文献   

16.
Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1(orc) mutants displayed several conspicuous cell polarity defects. Columella root cap cells revealed perturbed polar positioning of different organelles, and in the smt1(orc) root epidermis, polar initiation of root hairs was more randomized. Polar auxin transport and expression of the auxin reporter DR5-beta-glucuronidase were aberrant in smt1(orc). Patterning defects in smt1(orc) resembled those observed in mutants of the PIN gene family of putative auxin efflux transporters. Consistently, the membrane localization of the PIN1 and PIN3 proteins was disturbed in smt1(orc), whereas polar positioning of the influx carrier AUX1 appeared normal. Our results suggest that balanced sterol composition is a major requirement for cell polarity and auxin efflux in Arabidopsis.  相似文献   

17.
Endocytosis and relocalization of auxin carriers represent important mechanisms for adaptive plant growth and developmental responses. Both root gravitropism and halotropism have been shown to be dependent on relocalization of auxin transporters. Following their homology to mammalian phospholipase Ds (PLDs), plant PLDζ-type enzymes are likely candidates to regulate auxin carrier endocytosis. We investigated root tropic responses for an Arabidopsis pldζ1-KO mutant and its effect on the dynamics of two auxin transporters during salt stress, that is, PIN2 and AUX1. We found altered root growth and halotropic and gravitropic responses in the absence of PLDζ1 and report a role for PLDζ1 in the polar localization of PIN2. Additionally, irrespective of the genetic background, salt stress induced changes in AUX1 polarity. Utilizing our previous computational model, we found that these novel salt-induced AUX1 changes contribute to halotropic auxin asymmetry. We also report the formation of “osmotic stress-induced membrane structures.” These large membrane structures are formed at the plasma membrane shortly after NaCl or sorbitol treatment and have a prolonged presence in a pldζ1 mutant. Taken together, these results show a crucial role for PLDζ1 in both ionic and osmotic stress-induced auxin carrier dynamics during salt stress.  相似文献   

18.
植物生长素极性运输调控机理的研究进展   总被引:1,自引:0,他引:1  
李俊华  种康 《植物学报》2006,23(5):466-477
生长素极性运输特异地调控植物器官发生、发育和向性反应等生理过程。本文综述和分析了生长素极性运输的调控机制。分子遗传和生理学研究证明极性运输这一过程是由生长素输入载体和输出载体活性控制的。小G蛋白ARF附属蛋白GEF和GAP分别调控输出载体(PIN1)和输入载体(AUX1)的定位和活性, 并影响高尔基体等介导的细胞囊泡运输系统, 小G蛋白ROP也参与输出载体PIN2活性的调节。本 文基于作者的研究工作提出小G蛋白在调控生长素极性运输中的可能作用模式。  相似文献   

19.
The asymmetry of environmental stimuli and the execution of developmental programs at the organism level require a corresponding polarity at the cellular level, in both unicellular and multicellular organisms. In plants, cell polarity is important in major developmental processes such as cell division, cell enlargement, cell morphogenesis, embryogenesis, axis formation, organ development, and defense. One of the most important factors controlling cell polarity is the asymmetric distribution of polarity determinants. In particular, phosphorylation is implicated in the polar distribution of the determinant protein factors, a mechanism conserved in both prokaryotes and eukaryotes. In plants, formation of local gradients of auxin, the morphogenic hormone, is critical for plant developmental processes exhibiting polarity. The auxin efflux carriers PIN-FORMEDs (PINs) localize asymmetrically in the plasma membrane and cause the formation of local auxin gradients throughout the plant. The asymmetry of PIN distribution in the plasma membrane is determined by phosphorylationmediated polar trafficking of PIN proteins. This review discusses recent studies on the role of phosphorylation in polar PIN trafficking.  相似文献   

20.
The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue‐native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo‐ and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1‐naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole‐3‐acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号