首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cells expressing the cytokine-inducible NO synthase are known to trigger apoptosis in neighboring cells. Paramagnetic dinitrosyl nonheme iron complexes (DNIC) were found in tumor tissue about 40 years ago; however, the role of these NO(+)-bearing species is not completely understood. In the human Jurkat leukemia cell line, the application of the model complex DNIC-thiosulfate (50-200 microM) induced apoptosis (defined by phosphatidylserine externalization) in a concentration- and time-dependent manner. In Jurkat cells, the pan-caspase inhibitor, zVADfmk (50 microM), and/or stable transfection of antiapoptotic protein, Bcl-2, was unable to afford protection against DNIC-induced apoptosis. The membrane-impermeable metal chelator, N-methyl-D-glucamine dithiocarbamate (MGD; 200 microM), in the presence of DNIC significantly increased apoptosis, but had no effect on its own. Electron paramagnetic resonance studies showed that MGD led to rapid transformation of the extracellular DNIC into the stable impermeable NO-Fe-MGD complex and to a burst-type release of nitrosonium (NO(+)) equivalents in the extracellular space. These results suggest that in Jurkat cells, DNIC-thiosulfate induces Bcl-2- and caspase-independent apoptosis, which is probably secondary to local nitrosative stress at the cell surface. We hypothesize that the local release of nonheme Fe-NO species by activated macrophages may play a role in the killing of malignant cells that have high Bcl-2 levels.  相似文献   

2.
BMRP is a Bcl-2 binding protein that induces apoptosis   总被引:4,自引:0,他引:4  
Members of the Bcl-2 family of proteins play important roles in the regulation of cell death by apoptosis. The yeast Two-Hybrid system was utilized to identify a protein that interacts with the anti-apoptotic protein Bcl-2, designated BMRP. This protein corresponds to a previously known mitochondrial ribosomal protein (MRPL41). Binding experiments confirmed the interaction of BMRP to Bcl-2 in mammalian cells. Subcellular fractionation by differential centrifugation studies showed that both Bcl-2 and BMRP are localized to the same fractions (fractions that are rich in mitochondria). Northern blot analysis revealed a major bmrp mRNA band of approximately 0.8 kb in several human tissues. Additionally, a larger 2.2 kb mRNA species was also observed in some tissues. Western blot analysis showed that endogenous BMRP runs as a band of 16-17 kDa in SDS-PAGE. Overexpression of BMRP induced cell death in primary embryonic fibroblasts and NIH/3T3 cells. Transfection of BMRP showed similar effects to those observed by overexpression of the pro-apoptotic proteins Bax or Bad. BMRP-stimulated cell death was counteracted by co-expression of Bcl-2. The baculoviral caspase inhibitor p35 also protected cells from BMRP-induced cell death. These findings suggest that BMRP is a mitochondrial ribosomal protein involved in the regulation of cell death by apoptosis, probably affecting pathways mediated by Bcl-2 and caspases.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a lethal disease caused by the lack of the cytoskeletal protein dystrophin. Altered calcium homoeostasis and increased calcium concentrations in dystrophic fibres may be responsible for the degeneration of muscle occurring in DMD. In the present study, we used subsarcolemmal- and mitochondrial-targeted aequorin to study the effect of the antiapoptotic Bcl-2 protein overexpression on carbachol-induced near-plasma membrane and mitochondrial calcium responses in myotubes derived from control C57 and dystrophic (mdx) mice. We show that Bcl-2 overexpression decreases subsarcolemmal and mitochondrial calcium overload that occurs during activation of nicotinic acetylcholine receptors in dystrophic myotubes. Moreover, our results suggest that overexpressed Bcl-2 protein may prevent near-plasma membrane and mitochondrial calcium overload by inhibiting IP3Rs (inositol 1,4,5-trisphosphate receptors), which we have shown previously to be involved in abnormal calcium homoeostasis in dystrophic myotubes. Most likely as a consequence, the inhibition of IP3R function by Bcl-2 also inhibits calcium-dependent apoptosis in these cells.  相似文献   

4.
SR compartment calcium and cell apoptosis in SERCA overexpression   总被引:6,自引:0,他引:6  
The relationship between SR Ca2+ ATPase (SERCA) activities, cell calcium level, SR calcium store and cell cycle events is not clearly understood. We studied SERCA overexpression in Cos cells using an adenovirus vector. Twofold increases in SERCA mRNA and in protein were correlated with a 2.3-fold and a 1.6-fold paralleled increase in SR calcium pump activity (R = 0.97 and R = 0.99 respectively). Dose-related apoptotic cell death was associated with SERCA overexpression (R = 0.92). When serum was reduced to 4%, cell apoptosis further increased from 20.7 +/- 4.8% to 47.5 +/- 12.9% (M+/-SD; P<0.05; n=3). Flow cytometry identified cell cycle arrest at the G2/M phase. The interleukin-1 converting enzyme (ICE) inhibitor z-VAD-fmk reduced apoptosis for low-, medium- and high-expressing constructs, whereas the CPP-32 inhibitor z-DEVD-fmk had no effect. Flow cytometry using Fluo-3 and Fura-Red revealed a 1.5-fold higher basal calcium and a 10-fold SR calcium overload. ICE inhibitor z-VAD-fmk did not alter calcium loading. An epitope-tagged SERCA mutant, which has no intrinsic Ca2+-pump activities, had a much smaller effect on the SR calcium. These findings suggest that SERCA2A overexpression has an intrinsic role in altering cell-cycle progression, augmenting cellular and SR calcium loading, and precipitating ICE protease-mediated apoptosis; this represents as a novel model for primary SR calcium overload and associated cell apoptosis.  相似文献   

5.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

6.
We recently showed that photooxidative stress on cultured photoreceptor cells results in down-modulation of NF-kappaB activity which then leads to apoptosis of cultured 661W photoreceptor cells. In an effort to further delineate the mechanism of photoreceptor cell death, we sought to determine the effects of Bcl-2 overexpression on cell survivability. Wild-type 661W cells were transfected with the plasmid construct pSFFV-neo-Bcl-2 and several clones were isolated. All clones demonstrated increased Bcl-2 mRNA and protein levels, with the B4 clone exhibiting the greatest enhancement. On exposure to visible light the B4 cells were protected from undergoing apoptosis when compared with the mock transfected cells, as ascertained by TUNEL apoptosis assay and formazan based estimation of cell viability. The Bcl-2 overexpressing cells also maintained a higher Bcl-2/Bax ratio, suggesting that this ratio is important in protection from photooxidative stress. Electrophoretic mobility shift assays for NF-kappaB demonstrated higher activity in both nuclear and cytosolic fractions of the B4 photoreceptors compared with the 661W wild-type cells at all light exposure time points. Furthermore, the findings of the gel shift assays were further supported by immunocytochemistry for NF-kappaB which revealed that protein levels of the RelA subunit of NF-kappaB were protected in the nucleus as well as in the cytoplasm of Bcl-2 overexpressing B4 cells exposed to light compared to the 661W cells. These results suggest that Bcl-2 overexpression protects NF-kappaB protein levels and activity in the nucleus, indicating that preservation of NF-kappaB binding activity in the nucleus may be essential for photoreceptor cells to survive photooxidative damage induced apoptosis.  相似文献   

7.
Most metastatic melanoma patients fail to respond to available therapy, underscoring the need for novel approaches to identify new effective treatments. In this study, we screened 2,000 compounds from the Spectrum Library at a concentration of 1 micromol/L using two chemoresistant melanoma cell lines (M-14 and SK-Mel-19) and a spontaneously immortalized, nontumorigenic melanocyte cell line (melan-a). We identified 10 compounds that inhibited the growth of the melanoma cells yet were largely nontoxic to melanocytes. Strikingly, 4 of the 10 compounds (mebendazole, albendazole, fenbendazole, and oxybendazole) are benzimidazoles, a class of structurally related, tubulin-disrupting drugs. Mebendazole was prioritized to further characterize its mechanism of melanoma growth inhibition based on its favorable pharmacokinetic profile. Our data reveal that mebendazole inhibits melanoma growth with an average IC(50) of 0.32 micromol/L and preferentially induces apoptosis in melanoma cells compared with melanocytes. The intrinsic apoptotic response is mediated through phosphorylation of Bcl-2, which occurs rapidly after treatment with mebendazole in melanoma cells but not in melanocytes. Phosphorylation of Bcl-2 in melanoma cells prevents its interaction with proapoptotic Bax, thereby promoting apoptosis. We further show that mebendazole-resistant melanocytes can be sensitized through reduction of Bcl-2 protein levels, showing the essential role of Bcl-2 in the cellular response to mebendazole-mediated tubulin disruption. Our results suggest that this screening approach is useful for identifying agents that show promise in the treatment of even chemoresistant melanoma and identifies mebendazole as a potent, melanoma-specific cytotoxic agent.  相似文献   

8.
9.
Gallbladder carcinoma (GBC), an aggressive and mostly lethal malignancy, is known to be resistant to a number of apoptotic stimuli. Here, we report for the first time the pro-apoptosis role of arsenic trioxide (As2O3) in gallbladder carcinoma and identify the contribution of Bcl-2 in the As2O3-induced apoptosis. The treatment of As2O3 in gallbladder carcinoma cells could induce apoptosis in a dose-dependent manner and downregulate the expression of anti-apoptotic protein Bcl-2 at mRNA level. Moreover, Bcl-2 overexpression could protect gallbladder carcinoma cells from As2O3-induced apoptosis, indicating the contribution of Bcl-2 in As2O3-induced apoptosis. Taken together, these results suggest that arsenic trioxide induces gallbladder carcinoma cell apoptosis via downregulation of Bcl-2, which may have important therapeutic implications in gallbladder carcinoma patients.  相似文献   

10.
To determine the role of apoptosis in epidermal homeostasis and to identify its regulators in skin, we have developed and characterised a physiologically relevant in vitro model of epidermal apoptosis. First, we show that keratinocyte cell death can be induced by ultraviolet irradiation within the stratified epidermis of the skin equivalent in an in vivo-like manner. DNA fragmentation and changes in the patterns of expression of p53 and Bcl-2 suggest that the mechanisms operating in UV-induced apoptosis in the skin equivalent are controlled by these factors. Secondly, we demonstrate that apoptosis in this model is amenable to modulation by exogenous factors present in the culture medium, such as phorbol ester, and by tranfected genes, as shown by overexpression of bcl-2. These studies show that the skin equivalent is a valuable model in which to determine the controllable steps of the apoptotic pathway independently of the immune system and to correlate apoptosis to the physiologic state of the keratinocyte.  相似文献   

11.
It has been well-characterized that the renin-angiotensin system (RAS) physiologically regulates systemic arterial pressure. However, RAS signaling has also been shown to increase cell proliferation during malignancy, and angiotensin receptor blockers (ARBs) are able to decrease pro-survival signaling by inhibiting anti-apoptotic molecules and suppressing caspase activity. In this study, the apoptotic effects of telmisartan, a type of ARB, was evaluated using a non-cancerous human renal cell line (HEK) and a human renal cell carcinoma (RCC) cell line (786). Both types of cells were treated with telmisartan for 4 h, 24 h, and 48 h, and then were assayed for levels of apoptosis, caspase-3, and Bcl-2 using MTT assays, flow cytometry, and immunostaining studies. Analysis of variance was used to identify significant differences between these data (P < 0.05). Following the treatment of 786 cells with 100 µM and 200 µM telmisartan, a marked inhibition of cell proliferation was observed. 50 µM cisplatin also caused high inhibition of these cells. Moreover, these inhibitions were both concentration- and time-dependent (P < 0.05). Various apoptotic effects were also observed compared with control cells at the 24 h and 48 h timepoints assayed (P < 0.001). Furthermore, positive caspase-3 staining and down-regulation of Bcl-2 were detected, consistent with induction of cell death. In contrast, treatment of HEK cells with telmisartan did not produce an apoptotic effect compared with control cells at the 24 h timepoint (P > 0.05). Treatment with cisplatin promoted in HEK cells high index of apoptosis (P < 0.001). Taken together, these results suggest that telmisartan induces apoptosis via down-regulation of Bcl-2 and involvement of caspase-3 in human RCC cells.  相似文献   

12.
Activated T cells require anti-apoptotic cytokines for their survival. The anti-apoptotic effects of these factors are mediated by their influence on the balance of expression and localisation of pro- and anti-apoptotic members of the Bcl-2 family. Among the anti-apoptotic Bcl-2 family members, the expression level of Bcl-2 itself and its interaction with the pro-apoptotic protein Bim are now regarded as crucial for the regulation of survival in activated T cells. We studied the changes in Bcl-2 levels and its subcellular distribution in relation to mitochondrial depolarisation and caspase activation in survival factor deprived T cells. Intriguingly, the total Bcl-2 level appeared to remain stable, even after caspase 3 activation indicated entry into the execution phase of apoptosis. However, cell fractionation experiments showed that while the dominant nuclear pool of Bcl-2 remained stable during apoptosis, the level of the smaller mitochondrial pool was rapidly downregulated. Signals induced by anti-apoptotic cytokines continuously replenish the mitochondrial pool, but nuclear Bcl-2 is independent of such signals. Mitochondrial Bcl-2 is lost rapidly by a caspase independent mechanism in the absence of survival factors, in contrast only a small proportion of the nuclear pool of Bcl-2 is lost during the execution phase and this loss is a caspase dependent process. We conclude that these two intracellular pools of Bcl-2 are regulated through different mechanisms and only the cytokine-mediated regulation of the mitochondrial pool is relevant to the control of the initiation of apoptosis. D. Scheel-Toellner and K. Raza have contributed equally to this study.  相似文献   

13.
Activated cell-mediated immunity is known to be accompanied by elevated concentrations of 7,8-dihydroneopterin which in high concentrations was found to interfere with the oxidant-antioxidant balance. In this study we investigated whether 7,8-dihydroneopterin mediates apoptosis of Jurkat T-lymphocytes via a CrmA- or Bcl-2-sensitive pathway. Transient transfection assays with CrmA and Bcl-2 expression constructs showed that apoptosis was not affected by CrmA whereas it was significantly decreased upon cotransfection with Bcl-2 constructs. Results suggest that 7,8-dihydroneopterin-induced apoptosis of T-lymphocytes is mediated by a Bcl-2-sensitive pathway.  相似文献   

14.
15.
TRIM16 exhibits tumour suppressor functions by interacting with cytoplasmic vimentin and nuclear E2F1 proteins in neuroblastoma and squamous cell carcinoma cells, reducing cell migration and replication. Reduced TRIM16 expression in a range of human primary malignant tissues correlates with increased malignant potential. TRIM16 also induces apoptosis in breast and lung cancer cells, by unknown mechanisms. Here we show that overexpression of TRIM16 induces apoptosis in human breast cancer (MCF7) and neuroblastoma (BE(2)-C) cells, but not in non-malignant HEK293 cells. TRIM16 increased procaspase-2 protein levels in MCF7 and induced caspase-2 activity in both MCF7 and BE(2)-C cells. We show that TRIM16 and caspase-2 proteins directly interact in both MCF7 and BE(2)-C cells and co-localise in MCF7 cells. Most importantly, the induction of caspase-2 activity is required for TRIM16 to initiate apoptosis. Our data suggest a novel mechanism by which TRIM16 can promote apoptosis by directly modulating caspase-2 activity.  相似文献   

16.
Previous results of ours have demonstrated that the same clonotype can express both a sensitive and a resistant phenotype to Dex-mediated PCD induction depending on its cell cycle phase. In particular, we demonstrated that human T lymphocytes, arrested in the G0/G1 phase of the cell cycle, are susceptible, while proliferating T cells are resistant to Dex-mediated apoptosis. In this paper, we have further characterized the sensitive and resistant phenotypes and investigated whether a different expression of the apoptotic genes Fas, FasL, Bcl-2, Bcl-x and Bax is involved in the regulation of Dex-mediated apoptosis. The results show that the amount of Bcl-2 expression, that changes during cell cycle phases, determines susceptibility or resistance to apoptosis induced by Dex. In fact, undetectable expression of Bcl-2 in sensitive cells favors Dex-mediated apoptosis while high expression of Bcl-2 in proliferating cells counterbalances apoptosis induction. Moreover, the addition of exogenous IL-2, in the presence of Dex, fails to up-regulate Bcl-2 expression and to revert Dex-mediated apoptotic phenomena.  相似文献   

17.
A tumor suppressor gene product, ARF, sensitizes cells to apoptosis in the presence of appropriate collateral signals. In this study, we analyzed the mechanism of ARF-dependent apoptosis and demonstrated that ARF induces mitochondria-dependent apoptosis in p53 wild-type, ARF/p16-null cells. We also found that ARF evokes cytochrome c release from mitochondria, decreases mitochondrial membrane potential, and activates pro-caspase-9 to induce apoptosis. Our findings suggest that this apoptotic cellular modulation is brought about by up-regulation of the proapoptotic Bcl-2 family proteins Bax and Bim and down-regulation of antiapoptotic Bcl-2 in mitochondrial fractions. Additionally, ARF seems to down-regulate Bcl-2 in a p53-dependent manner while up-regulating Bax/Bim via a p53-independent pathway.  相似文献   

18.
Conjugated linoleic acid (CLA) is a powerful anticancer agent in a number of tumor model systems; however, its precise mechanism of action remains elusive. Here, we report that t10,c12 CLA, a component of synthetic CLA supplements, induced apoptosis and G1 arrest of p53 mutant TM4t murine mammary tumor cells. Furthermore, t10,c12-CLA induced a time- and concentration-dependent cleavage of caspases-3 and -9, and release of cytochrome c from mitochondria to cytosol. Levels of Bcl-2 protein were decreased both in total cellular lysates and in mitochondria after t10,c12-CLA treatment; however, there was no significant change in Bax or Bak. Overexpression of Bcl-2 attenuated apoptosis in response to t10,c12-CLA treatment. These results demonstrate that t10,c12-CLA triggers apoptosis of p53 mutant murine mammary tumor cells through the mitochondrial pathway by targeting Bcl-2.  相似文献   

19.
20.
Loss-of-function mutations in angiogenin (ANG) gene were discovered in amyotrophic lateral sclerosis (ALS) patients and ANG has been shown to prevent neuronal death both in vitro and in vivo. The neuro-protective activity of ANG was brought about partially by inhibiting stress-induced apoptosis. ANG attenuates both the extrinsic and the intrinsic apoptotic signals by activating Nf-κb-mediated cell survival pathway and Bcl-2-mediated anti-apoptotic pathway. Here we report that ANG inhibits nuclear translocation of apoptosis inducing factor (AIF), an important cell death-executing molecule known to play a dominant role in neurodegenerative diseases. ANG inhibits serum withdrawal-induced apoptosis by attenuating a series of Bcl-2-dependent events including caspase-3 activation, poly ADP-ribose polymerase-1 (PARP-1) cleavage, and AIF nuclear translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号