首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zheng Z  Huang C  Cao L  Xie C  Han R 《Fungal biology》2011,115(3):265-274
Cordyceps militaris is an insect-born fungus with various biological and pharmacological activities. The mutant library of C. militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation (ATMT), for the ultimate identification of genes involved in isolate degeneration during fruiting body production. Successful transformation of C.?militaris JM4 by A. tumefaciens AGL-1 carrying vector pATMT1 was performed, with efficiency in the range of 30-600 transformants per 1×10(5) conidia. Acetosyringone (AS) supplement in C. militaris ATMT was not necessary during either precultivation or cocultivation. The transformation procedure was optimised based on the ratios between donor A. tumefaciens and recipient conidia, and pH value of cocultivation media. The integration of the hyg gene into C. militaris genome was determined by PCR and Southern blot analysis, suggesting that 67-88% resulting transformants in cultivation conditions with or without AS were inserted by T-DNA and 55-80% were single-copy. Special mutants with altered phenotypes and growth potentials were characterised. The efficient TAIL-PCR approach was established for identifying T-DNA flanking sequences from C. militaris mutants. The successful construction of the mutant library indicated the usefulness of this approach for functional genetic analysis in this important fungus.  相似文献   

2.
We transformed haploid mycelium of Hebeloma cylindrosporum via Agrobacterium tumefaciens and optimised the procedure to develop a new tool for insertional mutagenesis in this fungus. Southern blot analysis of 83 randomly selected transformants showed that they all contained plasmid inserts. Each of them showed a unique hybridisation pattern, suggesting that integration was random in the fungal genome. Sixty percent of transformants obtained in the presence of bacteria pre-treated with acetosyringone integrated a single transferred DNA copy. Thermal asymmetric interlaced polymerase chain reaction allowed us to recover the left border and the right border junctions in 85% and 15% of transformants analysed, respectively. Results show that A. tumefaciens-mediated transformation may be a powerful tool for insertional mutagenesis in H. cylindrosporum.  相似文献   

3.
The sequence of the Caenorhabditis elegans genome contains approximately 19 000 genes. Available mutants currently exist for <20% of these genes. The existence of a Mos-based inducible transposon system in C.elegans could theoretically serve as a tool to saturate the genome with insertions. We report here the results of a pilot study aimed at assaying this strategy. We generated 914 independent random Mos insertions and determined their location by inverse PCR. The distribution of the insertions throughout the genome does not reveal any gross distortion, with the exception of a major hotspot on chromosome I (rDNA locus). Transposons are evenly distributed between the genic and intergenic regions. Within genes, transposons insert preferentially into the introns. We derived the consensus target site for Mos in C.elegans (ATATAT), which is common to Tc1, another mariner element. Finally, we assayed the mutagenic properties of insertions located in exons by comparing the phenotype of homozygous strains to that of known mutations or RNAi of the same gene. This pilot experiment shows that a Mos-based approach is a viable strategy that can contribute to the constitution of genome-wide collections of identified C.elegans mutants.  相似文献   

4.
Food security is a global concern and substantial yield increases in crops are required to feed the growing world population. Mutagenesis is an important tool in crop improvement and is free of the regulatory restrictions imposed on genetically modified organisms. Targeting Induced Local Lesions in Genomes(TILLING), which combines traditional chemical mutagenesis with high‐throughput genome‐wide screening for point mutations in desired genes, offers a powerful way to create novel mutant alleles for both functional genomics and improvement of crops. TILLING is generally applicable to genomes whether small or large, diploid or evenallohexaploid, and shows great potential to address the major challenge of linking sequence information to the function of genes and to modulate key traits for plant breeding. TILLING has been successfully applied in many crop species and recent progress in TILLING is summarized below, especially on the developments in mutation detection technology, application of TILLING in gene functional studies and crop breeding. The potential of TILLING/EcoTILLING for functional genetics and crop improvement is also discussed. Furthermore, a small‐scale forward strategy including backcross and selfing was conducted to release the potential mutant phenotypes masked in M2(or M3) plants.  相似文献   

5.
The modification of an endogenous gene into a designed sequence by homologous recombination, termed gene targeting (GT), has broad implications for basic and applied research. Rice (Oryza sativa), with a sequenced genome of 389 Mb, is one of the most important crops and a model plant for cereals, and the single-copy gene Waxy on chromosome 6 has been modified with a frequency of 1% per surviving callus by GT using a strong positive-negative selection. Because the strategy is independent of gene-specific selection or screening, it is in principle applicable to any gene. However, a gene in the multigene family or a gene carrying repetitive sequences may preclude efficient homologous recombination-promoted GT due to the occurrence of ectopic recombination. Here, we describe an improved GT procedure whereby we obtained nine independent transformed calli having the alcohol dehydrogenase2 (Adh2) gene modified with a frequency of approximately 2% per surviving callus and subsequently isolated eight fertile transgenic plants without the concomitant occurrence of undesirable ectopic events, even though the rice genome carries four Adh genes, including a newly characterized Adh3 gene, and a copy of highly repetitive retroelements is present adjacent to the Adh2 gene. The results indicate that GT using a strong positive-negative selection can be widely applicable to functional genomics in rice and presumably in other higher plants.  相似文献   

6.
Tomato is a well-established model organism for studying many biological processes including resistance and susceptibility to pathogens and the development and ripening of fleshy fruits. The availability of the complete Arabidopsis genome sequence will expedite map-based cloning in tomato on the basis of chromosomal synteny between the two species, and will facilitate the functional analysis of tomato genes.  相似文献   

7.
ESTree db: a tool for peach functional genomics   总被引:1,自引:0,他引:1  
  相似文献   

8.
The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and insertional mutants were selected in the dark on acetate-containing medium to recover light-sensitive and nonphotosynthetic mutants. The population of insertional mutants was subjected to a battery of primary and secondary phenotypic screens to identify photosynthesis-related mutants that were pigment deficient, light sensitive, nonphotosynthetic, or hypersensitive to reactive oxygen species. Approximately 9% of the insertional mutants exhibited 1 or more of these phenotypes. Molecular analysis showed that each mutant line contains an average of 1.4 insertions, and genetic analysis indicated that approximately 50% of the mutations are tagged by the transforming DNA. Flanking DNA was isolated from the mutants, and sequence data for the insertion sites in 50 mutants are presented and discussed.  相似文献   

9.
Penicillium marneffei is an opportunistic fungal pathogen of humans, causing respiratory, skin, and systemic mycosis in south-east Asia. Here we describe the transformation of P. marneffei with Agrobacterium tumefaciens, and the optimization of the transformation procedure. Transformations in different combinations between A. tumefaciens stains (LBA4404 and EHA105) and binary vectors (pCB309A, pBI129A, and pCaMBIA1312A) showed that EHA105/pBI129A were the most efficient partners. Southern blot analysis suggested that 87.5 % of transformants obtained with this protocol displayed single hybridization bands, indicating a single insert of T-DNA in each of the transformants. Unique hybridization patterns, along with thermal asymmetric interlaced PCR (TAIL-PCR) analysis of T-DNA insertion sites, suggested that A. tumefaciens-mediated transformation may be a powerful tool for insertional mutagenesis in P. marneffei. Several mutants with altered phenotypes were obtained during the construction of the mutant library, indicating the usefulness of the approach for functional genetic analysis in this important fungal pathogen.  相似文献   

10.
One of the major goals for the post-genome era is determining of the function of proteins predicted in the genome sequence. In many organisms functional assignments have been the results of comparative sequencing, proteomics or expression profiling. In the yeast, Saccharomyces cerevisiae, however, the functional role of a gene can be tested directly by disrupting the gene and examining the phenotype of the mutant. Because precise targeted deletions can be easily constructed, it is also possible to systematically delete every gene in the genome. Here we describe recent progress in yeast genome-wide mutagenesis programs and the results produced from analyzing the mutants created by them. Electronic Publication  相似文献   

11.
A proteomics approach has been developed aimed to allow high throughput analysis of protein products expressed from cDNA fragments (expressed sequence tags, ESTs). The concept relies on expression of gene products to generate specific antibodies for protein analysis, such as immunolocalization of the proteins on cellular and subcellular level. To evaluate the system, 55 cDNA clones with predominantly unknown function were selected from a mouse testis cDNA-library. A bacterial expression system was designed that allowed robust expression and easy purification. Protein levels between 15 and 80 mg l(-1) were obtained for 49 of the clones. Five clones were selected for immunization and all yielded functional antibodies that gave specific staining in Western blot screening of samples from various cell types. Furthermore, extensive immunolocalization information on subcellular level was obtained for three of the five clones. All generated data were stored in a relational database, and are made available through a web-interface (http://www.biochem.kth.se/multiscale/), which also provides relevant links and allows homology searches from the original sequences. The possibility to allow analysis of gene products from whole genomes using this 'localization proteomics' approach is discussed.  相似文献   

12.
Highly efficient phage-based Escherichia coli homologous recombination systems have recently been developed that enable genomic DNA in bacterial artificial chromosomes to be modified and subcloned, without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombinogenic engineering or recombineering, is efficient and greatly decreases the time it takes to create transgenic mouse models by traditional means. Recombineering also facilitates many kinds of genomic experiment that have otherwise been difficult to carry out, and should enhance functional genomic studies by providing better mouse models and a more refined genetic analysis of the mouse genome.  相似文献   

13.
14.
TILLING. Traditional mutagenesis meets functional genomics   总被引:21,自引:0,他引:21       下载免费PDF全文
Most of the genes of an organism are known from sequence, but most of the phenotypes are obscure. Thus, reverse genetics has become an important goal for many biologists. However, reverse-genetic methodologies are not similarly applicable to all organisms. In the general strategy for reverse genetics that we call TILLING (for Targeting Induced Local Lesions in Genomes), traditional chemical mutagenesis is followed by high-throughput screening for point mutations. TILLING promises to be generally applicable. Furthermore, because TILLING does not involve transgenic modifications, it is attractive not only for functional genomics but also for agricultural applications. Here, we present an overview of the status of TILLING methodology, including Ecotilling, which entails detection of natural variation. We describe public TILLING efforts in Arabidopsis and other organisms, including maize (Zea mays) and zebrafish. We conclude that TILLING, a technology developed in plants, is rapidly being adopted in other systems.  相似文献   

15.
The ultimate goal of genome research on the model flowering plant Arabidopsis thaliana is the identification of all of the genes and understanding their functions. A major step towards this goal, the genome sequencing project, is nearing completion; however, functional studies of newly discovered genes have not yet kept up to this pace. Recent progress in large-scale insertional mutagenesis opens new possibilities for functional genomics in Arabidopsis. The number of T-DNA and transposon insertion lines from different laboratories will soon represent insertions into most Arabidopsis genes. Vast resources of gene knockouts are becoming available that can be subjected to different types of reverse genetics screens to deduce the functions of the sequenced genes.  相似文献   

16.
Gompert Z 《Molecular ecology》2012,21(7):1542-1544
Admixture and introgression have varied effects on population viability and fitness. Admixture might be an important source of new alleles, particularly for small, geographically isolated populations. However, admixture might also cause outbreeding depression if populations are adapted to different ecological or climatic conditions. Because of the emerging use of translocation and admixture as a conservation and wildlife management strategy to reduce genetic load (termed genetic rescue), the possible effects of admixture have practical consequences ( Bouzat et al. 2009 ; Hedrick & Fredrickson 2010 ). Importantly, genetic load and local adaptation are properties of individual loci and epistatic interactions among loci rather than properties of genomes. Likewise, the outcome and consequences of genetic rescue depend on the fitness effects of individual introduced alleles. In this issue of Molecular Ecology, Miller et al. (2012) use model‐based, population genomic analyses to document locus‐specific effects of a recent genetic rescue in the bighorn sheep population within the National Bison Range wildlife refuge (NBR; Montana, USA). They find a subset of introduced alleles associated with increased fitness in NBR bighorn sheep, some of which experienced accelerated introgression following their introduction. These loci mark regions of the genome that could constitute the genetic basis of the successful NBR bighorn sheep genetic rescue. Although population genomic analyses are frequently used to study local adaptation and selection (e.g. Hohenlohe et al. 2010 ; Lawniczak et al. 2010 ), this study constitutes a novel application of this analytical framework for wildlife management. Moreover, the detailed demographic data available for the NBR bighorn sheep population provide a rare and powerful source of information and allow more robust population genomic inference than is often possible.  相似文献   

17.
Legumes are second only to grasses in worldwide economic importance, and understanding their molecular genetics is vital to the breeding of important grain and forage legumes. Over the past decade, Medicago truncatula has been selected as a model plant in which to study biological processes that are unique and pertinent to legumes, and that cannot easily be studied in Arabidopsis. Here, we discuss the most common tools for introducing and analyzing genetic mutations in M. truncatula. Because transformation and regeneration are still bottlenecks in studying a legume species, large-scale insertional mutagenesis poses a major challenge in M. truncatula. We discuss the tobacco retrotransposon Tnt1 as a viable and attractive option for introducing multiple independent insertions per plant for saturation mutagenesis.  相似文献   

18.
SUMMARY: DroPhEA is a core module of a web application that facilitates research in insect functional genomics through enrichment analysis on mutant phenotypes of fruit fly (Drosophila melanogaster). The phenotypes investigated in the analyses can be predefined by FlyBase or customized by users. DroPhEA allows users to specify mutation or ortholog types, displays enriched term results in a hierarchical structure and supports analyses on gene sets of all insect species with a fully sequenced genome.  相似文献   

19.
Proteins that bind ATP and GTP are important cellular components. We developed an immunological approach to selectively tag nucleotide-binding proteins based on the use of 5'-[4-(fluorosulfonyl)benzoyl]adenosine and 5'-[4-(fluorosulfonyl)benzoyl]guanosine affinity tags and an antibody against 4-(sulfonyl)benzoate. Detection follows affinity labeling, gel electrophoresis, and ester bond cleavage to expose the epitope. Trial analyses of labeled proteins from lymphoid cells identified multiple ATP-binding proteins, including chaperones, actin, kinases, an RNA splicing factor, a membrane ATPase, and ATP synthase.  相似文献   

20.
Genomics is the study of an organism’s entire genome. It started out as a great scientific endeavor in the 1990s which aimed to sequence the complete genomes of certain biological species. However viruses are not new to this field as complete viral genomes have routinely been sequenced since the past thirty years. The ‘genomic era’ has been said to have revolutionized biology. This knowledge of full genomes has created the field of functional genomics in today’s post-genomic era, which, is in most part concerned with the studies on the expression of the organism’s genome under different conditions. This article is an attempt to introduce its readers to the application of functional genomics to address and answer several complex biological issues in virus research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号