首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole. The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.  相似文献   

2.
Summary Using cryo-fixation and freeze-substitution electron microscopy, the effects of brefeldin A (BFA) on the structure of the trans-Golgi network (TGN), the endoplasmic reticulum (ER), and Golgi bodies in the unicellular green algaBotryococcus braunii were examined at various stages of the cell cycle. In the presence of BFA, all the TGNs of interphase and dividing cells aggregated to form a single tubular mass. In contrast, the TGNs decomposed just after cell division and disappeared during cell wall formation. Throughout the cell cycle, the TGN produced at least six kinds of vesicles, of which two were not formed in the presence of BFA: vesicles with a diameter of 200 nm and fibrillar substances, which formed in interphase cells; and vesicles with a diameter of 180–240 nm, which may participate in septum formation. In addition, the number of clathrin-coated vesicles attaching to the TGN decreased. In interphase cells, BFA induced the disassembly of Golgi bodies and an increase in the smooth-ER cisternae at the cis-side of Golgi bodies. This result may suggest the existence of retrograde transport from the Golgi bodies to the ER in the presence of BFA. These drastic structural changes in the Golgi bodies and the ER of interphase cells were not observed in BFA-treated dividing cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TGN trans-Golgi network  相似文献   

3.
Ubiquitination functions as a sorting signal for lysosomal degradation of cell-surface proteins by facilitating their internalization from the plasma membrane and incorporation into lumenal vesicles of multivesicular bodies (MVBs). Ubiquitin may also mediate sorting of proteins from the trans-Golgi network (TGN) to the endosome, thereby preventing their appearance on the cell surface and hastening their degradation in the lysosome-vacuole. Substantiation of a direct ubiquitin-dependent TGN sorting pathway relies in part on identifying candidate machinery that may function as a ubiquitin-sorting 'receptor'at the TGN. Members of the GGA family of coat proteins localize to the TGN and promote the incorporation of proteins into clathrin-coated vesicles destined for transport to endosomes. We show that the GGA coat proteins bind directly to ubiquitin through their GAT domain and demonstrate that this interaction is required for the ubiquitin-dependent sorting of the Gap1 amino acid transporter from the TGN to endosomes. Thus, GGA proteins fulfill the role of ubiquitin sorting receptors at the TGN.  相似文献   

4.
The final envelopment of most herpesviruses occurs at Golgi or post-Golgi compartments, such as the trans Golgi network (TGN); however, the final envelopment site of human herpesvirus 6 (HHV-6) is uncertain. In this study, we found novel pathways for HHV-6 assembly and release from T cells that differed, in part, from those of alphaherpesviruses. Electron microscopy showed that late in infection, HHV-6-infected cells were larger than uninfected cells and contained many newly formed multivesicular body (MVB)-like compartments that included small vesicles. These MVBs surrounded the Golgi apparatus. Mature virions were found in the MVBs and MVB fusion with plasma membrane, and the release of mature virions together with small vesicles was observed at the cell surface. Immunoelectron microscopy demonstrated that the MVBs contained CD63, an MVB/late endosome marker, and HHV-6 envelope glycoproteins. The viral glycoproteins also localized to internal vesicles in the MVBs and to secreted vesicles (exosomes). Furthermore, we found virus budding at TGN-associated membranes, which expressed CD63, adaptor protein (AP-1) and TGN46, and CD63 incorporation into virions. Our findings suggest that mature HHV-6 virions are released together with internal vesicles through MVBs by the cellular exosomal pathway. This scenario has significant implications for understanding HHV-6's maturation pathway.  相似文献   

5.
A mechanism by which ubiquitinated cargo proteins are sorted into multivesicular bodies (MVBs) from plasma and trans-Golgi network (TGN) membranes is well established in yeast and mammalian somatic cells. However, the ubiquitin-dependent sorting pathway has not been clearly defined in germ cells. In this study we identified a novel member of the transmembrane RING-finger family of proteins, termed membrane-associated RING-CH (MARCH)-XI, that is expressed predominantly in developing spermatids and weakly in brain and pituitary. MARCH-XI possesses an E3 ubiquitin ligase activity that targets CD4 for ubiquitination. Immunoelectron microscopy of rat round spermatids showed that MARCH-XI is localized to TGN-derived vesicles and MVBs. Fluorescence staining of rat round spermatids and immunoprecipitation of rat testis demonstrated that MARCH-XI forms complexes with the adaptor protein complex-1 and with fucose-containing glycoproteins including ubiquitinated forms. Furthermore, the C-terminal region of MARCH-XI mediates its interaction with mu1-adaptin and Veli through a tyrosine-based motif and a PDZ binding motif, respectively. Our data suggest that MARCH-XI acts as a ubiquitin ligase with a role in ubiquitin-mediated protein sorting in the TGN-MVB transport pathway, which may be involved in mammalian spermiogenesis.  相似文献   

6.
Formation of large perinuclear brefeldin A (BFA)-induced compartments is a characteristic feature of root apex cells, but it does not occur in shoot apex cells. BFA-induced compartments have been studied mostly using low resolution fluorescence microscopy techniques. Here, we have employed a high-resolution ultrastructural method based on ultra rapid freeze fixation of samples in order to study the formation of BFA-induced compartments in intact maize root epidermis cells in detail. This approach reveals five novel findings. Firstly, plant TGN/PGN elements are not tubular networks, as generally assumed, but rather vesicular compartments. Secondly, TGN/PGN vesicles interact with one another extensively via stalk-like connections and even fuse together via bridge-like structures. Thirdly, BFA-induced compartments are formed via extensive homotypic fusions of the TGN/PGN vesicles. Fourthly, multivesicular bodies (MVBs) are present within the BFA-induced compartments. Fifthly, mitochondria and small vacuoles accummulate abundantly around the large perinuclear BFA-induced compartments.Key Words: brefeldin A, BFA-induced compartments, golgi, endosomes, root apex  相似文献   

7.
The subcellular localization of the sorting nexins (SNXs) in higher plants is a matter of controversy. Previous confocal laser scanning microscopy (CLSM studies on root cells from a transgenic Arabidopsis line expressing SNX1-GFP have suggested that this SNX is present on an endosome having characteristics of both the trans-Golgi network (TGN) and the multivesicular body (MVB). In contrast, SNX2a locates exclusively to the TGN when transiently expressed in tobacco mesophyll protoplasts. By performing immunogold electron microscopy on cryofixed Arabidopsis roots, we have tried to clarify the situation. Both SNX1-GFP and endogenous SNX2a locate principally to the TGN. Labeling of MVBs could not be confirmed with any certainty.  相似文献   

8.
Summary The jejunal absorptive cells of the salamander Amphiuma, when examined using transmission electron microscopy, were found to possess a unique type of intracellular vacuole containing membranous tubules. These vanoles, tentatively named multitubular bodies, were located in the cytoplasm between the nucleus and the brush-border membrane, and were seen with greatest frequency in the summer and fall. The vacuoles containing multitubular bodies had an average diameter of 0.6 m, and the membranous tubules within had an average diameter of 30 nm. The tubules differed morphologically from the vesicles in the multivesicular bodies, and from the primary lysosomes in the polylysosomal vacuoles. The tubules did not exhibit acid phosphatase activity, and were of similar diameter and membrane thickness as the Golgi saccules. In contrast to the multivesicular bodies, the multitubular bodies did not take up exogenous horseradish peroxidase. Early forms of autophagosomes resembling these vacuoles were often seen in the para-Golgi region of the cell. The multitubular bodies may represent a distinct type of autophagosome. Although the exact origin of the tubules as well as their role in cellular activity is unclear, their seasonal appearance within the multitubular bodies of the absorptive cells suggests a unique means of selective down-regulation of Golgi-like organelles.  相似文献   

9.
D. S. Domozych 《Protoplasma》1989,149(2-3):95-107
Summary The endomembrane system of the chlamydomonad flagellate,Gloeomonas kupfferi (Chlorophyta), is complex. It consists of a proliferating ER network, a perinuclear complex of 14–18 dictyosomes and 8–12 vacuoles and an anterior contractile vacuole complex. The ER network extends from the nuclear envelope outwards, ensheafhs a dictyosome, extends out through a lobe of the chloroplast and terminates in the thin zone of peripheral cytoplasm between the chloroplast and plasmamembrane. The individual dictyosome is polar with distinct cis- and trans-faces. The cis-face is closely associated with transition vesicles emerging from the adjacent ER. Large vesicles emerge from peripheral swellings of terminal cisternae. The dictyosome-associated ER is connected to the peripheral vacuolar system. During cell division and cytokinesis, changes in the endomembrane system occur. Dictyosomes divide and quickly separate to form perinuclear complexes around the daughter nuclei. Each dictyosome undergoes morphological changes during this wall precursor-producing stage. ER lines the furrow zone and is closely associated with phycoplast microtubules. A discussion of the endomembrane system in membrane flow mechanics is provided.Abbreviations ER endoplasmic reticulum - OsFeCN Osmium ferricyanide  相似文献   

10.
MARCH11, a RING-finger transmembrane ubiquitin ligase, is predominantly expressed in spermatids and localized to the trans-Golgi network (TGN) and multivesicular bodies (MVBs). Because ubiquitination acts as a sorting signal of cargo proteins, MARCH11 has been postulated to mediate selective protein sorting via the TGN–MVB pathway. However, the physiological substrate of MARCH11 has not been identified. In this study, we have identified and characterized SAMT1, a member of a novel 4-transmembrane protein family, which consists of four members. Samt1 mRNA and its expression product were found to be specific to the testis and were first detected in germ cells 25 days after birth in mice. Immunohistochemical analysis further revealed that SAMT1 was specifically expressed in haploid spermatids during the cap and acrosome phases. Confocal microscopic analysis showed that SAMT1 co-localized with MARCH11 as well as with fucose-containing glycoproteins, another TGN/MVB marker, and LAPM2, a late endosome/lysosome marker. Furthermore, we found that MARCH11 could increase the ubiquitination of SAMT1 and enhance its lysosomal delivery and degradation in an E3 ligase activity-dependent manner. In addition, the C-terminal region of SAMT1 was indispensable for its ubiquitination and proper localization. The other member proteins of the SAMT family also showed similar expression profile, intracellular localization, and biochemical properties, including ubiquitination by MARCH11. These results suggest that SAMT family proteins are physiological substrates of MARCH11 and are delivered to lysosomes through the TGN–MVB pathway by a ubiquitin-dependent sorting system in mouse spermatids.  相似文献   

11.
Summary Elongating caulonemal apical cells of the mossPhyscomitrium turbinatum were cultivatedin vitro and observed during successive stages of cell elongation and division. Actively-growing cells which had completed approximately half of their growth in length were examined by electron microscopy. The distribution of many organelles changes progressively from the cell tip to the distal edge of the large basal vacuole, establishing an apical-basal gradient in organization. Whereas the vacuoles become progressively more extensive in more mature parts of the cell, the dictyosomes, chloroplasts and smooth endoplasmic reticulum are more numerous in younger regions. Some mitochondria in the younger regions of the cell contain localized areas of membrane invagination. Attempts were made to clarify the origin and growth of vacuoles, which become increasingly prominent as the apical cell elongates.Morphological evidence suggests that vacuoles arise in close association with endoplasmic reticulum and dictyosomes as a result of ER dilation and/or cytoplasmic sequestration. The number of vacuolar profiles is highest at the cell tip, decreasing progressively toward the base of the cell, Conversely, the mean area of vacuolar profiles increases progressively toward more basal regions of the cell. These features, along with the increasing number of closely grouped vacuolar profiles along an apical-basal gradient are compatible with the concept of vacuolar growth by coalescence, culminating in their union with the basal vacuole.  相似文献   

12.
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.  相似文献   

13.
trans -Golgi network (TGN), and the changes in its structure and behavior throughout the cell cycle of a unicellular green alga, Botryococcus braunii, were examined with deep-etching replicas and in cryo-fixed/freeze-substituted specimens. In interphase cells, the TGN consisted of a hemispherically shaped cisterna (TGN-cisterna) with regularly distributed pores on the surface and a tubular network (TGN-tubules) with clathrin-coated vesicles. The TGNs changed their structure drastically throughout the cell cycle. The TGN-cisterna disappeared from the beginning of nuclear division to the completion of the cell wall, in contrast that TGN-tubules with the clathrin-coated vesicles were always observed. The TGN-tubules produced at least five other kinds of vesicles depending on the stage of the cell cycle: 200-nm vesicles with fibrillar substances and multivesicular bodies in interphase, 180–240 nm vesicles during cell division, and 400–450 nm vesicles containing fibrils and small masses of electron-dense substances, and 200-nm vesicles containing electron-dense spherical substances just after cell division. During cell wall formation, TGN-tubules were small and had only a few clathrin-coated vesicles. After cell wall formation, TGN-tubules grew and a TGN-cisterna with pores appeared again. Received 19 October 1998/ Accepted in revised form 1 March 1999  相似文献   

14.
MDCK cells were utilized to study the biosynthesis and secretion of chicken apolipoprotein AI (apoAI). A full-length apoAI cDNA in an eukaryotic expression vector was transfected into a MDCK-TGG cell line, expressing a trans-Golgi network (TGN) marker (TGG), and stable clones expressing apoAI were selected. Pulse–chase and cell fractionation studies showed that, compared to gp 80 (an endogenous secretory protein), apoAI was rapidly transported from RER to Golgi complex within 5 min and released from the Golgi complex to the cell exterior by 30 min. Immunofluorescence and three-dimensional laser scanning confocal microscopy revealed that at steady state apoAI was predominantly localized in the TGN. Transferrin uptake experiments showed that apoAI, localized in the TGN, was derived primarily from biosynthetic and not from endocytic routes. ApoAI was secreted in a nonpolarized manner. We suggest that apoAI stays transiently in the TGN prior to its secretion and that the major events of apoAI biosynthesisin vivoand in MDCK cells are conserved. Possible mechanisms of rapid ER to Golgi transport and TGN localization of apoAI are discussed.  相似文献   

15.
Endosomes regulate both the recycling and degradation of plasma membrane (PM) proteins, thereby modulating many cellular responses triggered at the cell surface. Endosomes also play a role in the biosynthetic pathway by taking proteins to the vacuole and recycling vacuolar cargo receptors. In plants, the trans-Golgi network (TGN) acts as an early/recycling endosome whereas prevacuolar compartments/multivesicular bodies (MVBs) take PM proteins to the vacuole for degradation. Recent studies have demonstrated that some of the molecular complexes that mediate endosomal trafficking, such as the retromer, the ADP-ribosylation factor (ARF) machinery, and the Endosomal Sorting Complexes Required for Transport (ESCRTs) have both conserved and specialized functions in plants. Whereas there is disagreement on the subcellular localization of the plant retromer, its function in recycling vacuolar sorting receptors (VSRs) and modulating the trafficking of PM proteins has been well established. Studies on Arabidopsis ESCRT components highlight the essential role of this complex in cytokinesis, plant development, and vacuolar organization. In addition, post-translational modifications of plant PM proteins, such as phosphorylation and ubiquitination, have been demonstrated to act as sorting signals for endosomal trafficking.  相似文献   

16.
对含笑花药发育中的超微结构变化进行观察,结果显示:(1)花粉发育中有三次液泡变化过程——第一次是小孢子母细胞在形成时内部出现了液泡,这可能与胼胝质壁的形成有关;第二次是在小孢子母细胞减数分裂之前,细胞内壁纤维素降解区域形成液泡,它的功能可能是消化原有的纤维素细胞壁;第三次是在小孢子液泡化时期,形成的大液泡将细胞核挤到边缘,产生极性。(2)含笑花粉在小孢子早期形成花粉外壁外层,花粉外壁内层在小孢子晚期形成,而花粉内壁是在二胞花粉早期形成;花粉成熟时,表面上沉积了绒毡层细胞的降解物而形成了花粉覆盖物。研究认为,含笑花粉原外壁的形成可能与母细胞胼胝质壁有关,而由绒毡层细胞提供的孢粉素物质按一定结构建成了花粉覆盖物。  相似文献   

17.
Summary The ultrastructural localization of peroxidase in soybean (Glycine max L.) suspension culture cells and protoplasts is reported. In cells peroxidase is found primarily in the cell wall and at the tonoplast. Protoplasts and cells contain a vacuolar system which is differentiated with respect to peroxidase content since some vacuoles are found which do not contain peroxidase reaction product. The Golgi dictyosomes, coated and smooth vesicles contain peroxidase. Some of the multivesicular bodies have the reaction product as well. The results are discussed in terms of the pathways of sorting of peroxidase between the cell wall and vacuoles of cultured cells.  相似文献   

18.
The organization ofPinus sylvestris pollen tubes during growth was studied by video microscopy of living cells and by electron microscopy after freeze-fixation and freeze-substitution (FF-FS). Pollen germinated and the tubes grew slowly for a total period of about 7 days. Some of the grains formed two tubes, while 10–50% of the tubes ramified. These features are in accordance with development in vivo. The cytoplasmic hyaline cap at the tip disappeared during the 2nd or 3rd day of culture. Aggregates of starch grains progressively migrated from the grain into the tube and later into the branches. Vacuoles first appeared at day 2 and eventually filled large parts of the tube. The tube nucleus was located at variable distances from the tip. Some of the organelles showed linear movements in a mostly circulatory pattern, but the majority of the organelles showed brownian-like movements. Rhodamine-phalloidin-stained actin filaments had a gross axial orientation and were found throughout the tube including at the tip. The ultrastructure of pollen tubes was well preserved after FF-FS, but signs of shrinkage were visible. The secretory vesicles in growing tips were not organized in a vesicle cone, and coated pits had a low density with only local accumulations, which is in accordance with slow growth. The mitochondria contained small cristae and a darkly stained matrix and were located more towards the periphery of the tube, indicating low respiratory activity and low oxygen levels. The dictyosomes carried typical trans-Golgi networks, but some contained less than the normal number of cisternae. Other elements of the cytoplasm were irregularly spaced rough endoplasmic reticulum, many multivesicular bodies, lipid droplets and two types of vacuoles. The typical organization associated with tip growth in angiosperm pollen tubes, e.g.Nicotiana tabacum, was not present inP. sylvestris pollen tubes. The different morphology may relate to the growth rate and not to the type of growth.  相似文献   

19.
Summary Our investigations on Canna indica L. indicate that the pollen of this species is polymorphic: there are two types of pollen — a larger type and a comparatively smaller type. Transmission electron microscopy (TEM) revealed the presence of small vacuoles containing tannic substances in the generative cell (GC) of the larger grains: the GC of the mature grain contained a higher quantity of tannins than the GC of the immature grain. Mitochondria, lipid bodies, rough endoplasmic reticulum (RER) and microtubular bundles were present in the cytoplasm of the GC. Numerous mitochondria, lipid bodies and plastids were also present in the vegetative cell (VC), with the mitochondria clustered around the vegetative nucleus. The plastids were observed to be associated with the RER cisterns. During the maturation process, the number of starch grains contained in the plastids decreased.  相似文献   

20.
D. S. Domozych 《Protoplasma》1999,206(1-3):41-56
Summary Closterium acerosum possesses a well-defined, mucilage-secretory mechanism consisting of up to 100 Golgi bodies, two distinct vacuolar networks, and an active cytoplasmic-streaming network located in the cell periphery. Five different sodium-affecting agents were applied to actively secreting cells in order to determine the role, if any, of Na+ on this secretory mechanism. Significant effects to the endomembrane system and actin cytoskeleton were noted upon treatment with the Na+-specific ionophores monensin and SQl-Et. In particular, the following alterations were noted: incurling of Golgi cisternae and the formation of circular cisternal profiles at the trans face, swelling of the cis-medial cisternae, and dissociation of the Golgi body from the internal cytoplasm to the peripheral cytoplasmic zones. Immunogold labeling with a mucilage-specific polyclonal antibody reveals that mucilage production is diminished during longer ionophore treatments. Likewise, both the polar and peripheral vacuoles disintegrate into a series of smaller vacuoles. Cytoplasmic streaming ceases and the normal actin network of the peripheral cytoplasm transforms into irregularly spaced fibrillar bundles. Finally, multilaminate structures appear at the plasma membrane. No cytological effects could be observed with the Na+-channel blockers or Na+-current transducers QX-14, tetrodotoxin, or amiloride.Abbreviations DIC differential interference contrast - GA Golgi apparatus - LM light microscopy - TEM transmission electron microscopy - TGN trans Golgi network - WHM Woods Hole medium - DMSO dimethylsulfoxide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号