首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As currently recognized, the mammalian order Lipotyphla contains six extant families: Chrysochloridae, Erinaceidae, Solenodontidae, Soricidae, Talpidae, and Tenrecidae. Although most mammalogists have accepted this taxon, the morphological support for Lipotyphla is relatively weak, and recent phylogenetic studies using molecular data have concluded that it is not monophyletic. Instead, these molecular studies place chrysochlorids and tenrecids in the proposed clade Afrotheria, together with aardvarks, elephants, elephant shrews, hyraxes, and sirenians. Despite strong molecular support, Afrotheria has received little or no morphological support. It was recently suggested that a mobile snout might be a morphological feature uniting afrotherians. To test this proposal, I dissected the extrinsic snout musculature in an assortment of lipotyphlan and afrotherian mammals. These muscles provide support for Lipotyphla but not for Afrotheria. The snout is moved by different muscles in different afrotherian taxa, suggesting that the mobile snout is not homologous across different afrotherian lineages. In contrast, lipotyphlans have a distinctive set of five snout muscles moving the snout tip that appears to be unique to these six families. In addition, in soricids and talpids, four of the five snout muscles originate posterior to the zygomatic arch, supporting sister-taxon status for these two lineages. Although the extrinsic snout musculature does not support Afrotheria as presently proposed, it is consistent with an Afrotheria that does not include chrysochlorids and tenrecids.  相似文献   

2.
Because of their modified cranial morphology, syngnathid pipefishes have been described as extreme suction feeders. The presumption is that these fishes use their elongate snout much like a pipette in capturing planktonic prey. In this study, we quantify the contribution of suction to the feeding strike and quantitatively describe the prey capture mechanics of the bay pipefish Syngnathus leptorhynchus, focusing specifically on the role of both cranial elevation and snout movement. We used high-speed video to capture feeding sequences from nine individuals feeding on live brine shrimp. Sequences were digitized in order to calculate kinematic variables that could be used to describe prey capture. Prey capture was very rapid, from 2 to 6 ms from the onset of cranial rotation. We found that suction contributed at most about one-eighth as much as ram to the reduction of the distance between predator and prey. This movement of the predator was due almost exclusively to movement of the snout and neurocranium rather than movement of the whole body. The body was positioned ventral and posterior to the prey and the snout was rotated dorsally by as much as 21 degrees, thereby placing the mouth immediately behind the prey for capture. The snout did not follow the identical trajectory as the neurocranium, however, and reached a maximum angle of only about 10 degrees. The snout consists, in part, of elongate suspensorial elements and the linkages among these elements are retained despite changes in shape. Thus, when the neurocranium is rotated, the four-bar linkage that connects this action with hyoid depression simultaneously acts to expand and straighten the snout relative to the neurocranium. We confirm the presence of a four-bar linkage that facilitates these kinematics by couplings between the pectoral girdle, urohyal, hyoid complex, and the neurocranium-suspensorium complex.  相似文献   

3.
Seahorses give birth to juveniles having a fully functional feeding apparatus, and juvenile feeding behaviour shows striking similarities to that of adults. However, a significant allometric growth of the snout is observed during which the snout shape changes from relatively short and broad in juveniles to relatively long and slender in adults. Since the shape of the buccal cavity is a critical determinant of the suction performance, this snout allometry will inevitably affect the suction feeding ability. To test whether the snout is optimised for suction feeding throughout an ontogeny, we simulated the expansion of different snout shapes varying from extremely long and slender to short and broad for juvenile and adult snout sizes, using computational fluid dynamic models. Our results showed that the snout diameter at the start of the simulations is involved in a trade-off between the realizable suction volume and expansion time on the one hand (improving with larger initial diameters), and maximal flow velocity on the other hand (improving with smaller initial diameters). Moreover suction performance (suction volume as well as maximal attainable flow velocity) increased with decreasing snout length. However, an increase in snout length decreases the time to reach the prey by the cranial rotation, which may explain the prevalence of long snouts among syngnathid fishes despite the reduced suction performance. Thus, the design of the seahorse snout revolves around a trade-off between the ability to generate high-volume suction versus minimisation of the time needed to reach the prey by the cranial rotation.  相似文献   

4.
Summary Eye diameter relative to body length, and interommatidial angle, rhabdom length and rhabdom width as a function of eye size, were determined for specimens of 19 benthic macruran decapod species in 8 genera and 5 families, spanning a wide range of habitat depths. For these species, eye diameter relative to body length tends to increase with adult habitat. In addition, rate of eye growth relative to body growth increases with habitat depth, a trend opposite to that of pelagic crustaceans previously investigated. Interommatidial angle decreases with increasing eye diameter, and therefore with depth for an individual of a particular size. Rhabdom length and width tend to increase with eye diameter. Visual sensitivity may increase with depth among these species as a result of both larger eyes and the associated increase in rhabdom dimensions. Differences in energetic limitations and visual environments might produce the difference in trends of eye size relative to body size between benthic and pelagic crustaceans.  相似文献   

5.
红松半同胞家系变异分析及选择研究   总被引:3,自引:0,他引:3  
为评价和筛选优质红松种质资源,以吉林省三岔子林业局国家红松良种基地的53个28年生红松子代半同胞家系为材料,对其生长性状(树高、地径、胸径、三米径、枝下高和第六轮枝高)及形质性状(分枝角、通直度和轮枝数)进行测定。方差分析结果表明,除部分形质性状外,大部分生长性状在各变异来源间均达极显著差异(P<0.01);各性状表型变异系数变化范围为6.97%~37.39%,遗传变异系数变化范围为1.76%~26.75%;各性状家系遗传力变化范围为0.136~0.746;单株遗传力变化范围为0.031~0.827,个别性状遗传力较低。相关性分析结果表明,除分枝角外,其余各性状间大部分呈极显著正相关(r>0.073)。一般配合力分析结果表明,不同性状一般配合力高的家系差异较大,难以进行联合筛选,需进一步进行分析。主成分分析结果表明,三个主成分的累计贡献率达72.31%,表明三个主成分包含了供试家系生长及形质性状的大部分信息。树高、地径、胸径、三米径和材积对主成分Ⅰ的贡献较大,且描述红松的生长性状,因此可作为选择优良家系的评价指标。利用多性状综合评价法对家系及单株进行选择,以家系材积现实增益超过35%为标准,可筛选出5个优良家系,入选率为10%,入选的优良家系树高、地径、胸径、三米径和材积平均值分别为7.90m、25.02cm、19.21cm、16.23cm和0.1074kg·m-3,现实增益分别为3.94%、14.71%、17.26%、19.34%和39.48%。对优良家系内的单株进行选择,按单株材积遗传增益超过100%为标准,可筛选出6株优良单株,入选率为4%,入选单株树高、地径、胸径、三米径和材积平均值比总平均值分别高1.60m、8.54cm、7.04cm、6.69cm和0.097kg·m^-3,遗传增益分别为5.99%、29.92%、35.53%、37.06%和102.04%。所选优良家系及单株可为良种审定提供基础,也可以为种子园的营建、改建提供材料。  相似文献   

6.
The alpha-keratins, the principal components of the tonafilaments, were extracted, characterized and compared in bovine hoof and snout epidermis. The alpha-fibrous proteins of these tissues are similar with respect to their molecular weights, amino acid composition and percentage of helical structure. However, distinct differences in the polypeptides comprising these proteins were observed. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of these proteins consistently showed that the polypeptide chain in snout, designated as band B (mol.wt. 67,000), was completely absent from hoof preparations. This was confirmed with several alternative preparative procedures. The peptides produced by digestion of the intact keratins from hoof and snout with CNBr were distinctly different. Finally, digestion of keratins from hoof and snout with trypsin yielded products that differed in size and resistance to further digestion. Thus, in addition to the interspecies polypeptide heterogeneity documented in the literature, this report establishes the intraspecies heterogeneity of keratins and suggests that these differences are due to either the expression of different gene products or differences in post-translational modifications in these two tissues.  相似文献   

7.
Piranhas, like many teleosts, change their diets on both ontogenetic and phylogenetic time scales. Prior studies have suggested that pervasive morphological changes in body form on a phylogenetic time scale may be related to changes in diet, but previous reports have found little shape change in piranhas on an ontogenetic time scale. We re-examine the post-transformational allometry of body form in one piranha, Pygocentrus nattereri (Kner), using the method of thin-plate splines decomposed by their partial warps. We find substantial evidence of allometry, primarily elongation of the mid-body relative to the more anterior and posterior regions, elongation of the postorbital and nape regions relative to the more anterior head and posterior body, and deepening of the head relative to the body. In addition to these pervasive changes throughout the body, there are some that are more localized, especially elongation of the postorbital region relative to eye diameter and snout, and an even more localized elongation of the snout relative to eye diameter. Initial dietary transitions are associated with changes in head and jaw proportions, but rates of shape change decelerate through growth, so that the final transition to a diet increasingly dominated by small whole fish appears associated with change largely in overall body size. © 1995 Wiley-Liss, Inc.  相似文献   

8.
The left–right asymmetry of scale‐eating Tanganyikan cichlids is described as a unilateral topographical shift of the quadratomandibular joints. This morphological laterality has a genetic basis and has therefore been used as a model for studying negative frequency‐dependent selection and the resulting oscillation in frequencies of two genotypes, lefty and righty, in a population. This study aims were to confirm this laterality in Perissodus microlepis Boulenger and P. straeleni (Poll) and evaluate an appropriate method for measuring and testing the asymmetry. Left–right differences in the height of the mandible posterior ends (HMPE) and the angle between the neurocranium and vertebrae of P. microlepis and P. straeleni were measured on skeletal specimens. Snout‐bending angle was also measured using a dorsal image of the same individuals following a previous method. To define which distribution model, fluctuating asymmetry (FA), directional asymmetry (DA), or antisymmetry (AS), best fit to the lateral asymmetry of the traits, we provided an R package, IASD. As a result, HMPE and neurocranium–vertebrae angle of both species were best fitted to AS, suggesting that P. microlepis and P. straeleni showed a distinct dimorphism in these traits, although snout‐bending angle of P. microlepis was best fitted to FA. Measurement error was low for HMPE comparing the snout‐bending angle in P. microlepis, indicating that measuring HMPE is a more accurate method. The scale‐eating tribe Perissodini showed distinct antisymmetry in the jaw skeleton and neurocranium–vertebrae angle, and this laterality remains a valid marker for further evolutionary studies.  相似文献   

9.
Phylogenetic relationships within the superfamily Curculionoidea were reconstructed. Autapomorphies of the superfamily Curculionoidea include more or less pronounced snout, clubbed antennae, and partially sclerotized or completely membranous male tergite 9. Weevil families can be divided into three groups. The first group includes the most primitive family Nemonychidae. The second group includes nine families (Anthribidae, Belidae, Oxycorynidae, Eccoptarthridae, Allocorynidae, Rhynchitidae, Attelabidae, Ithyceridae, and Brentidae). The third (“higher”) group includes six families (Brachyceridae, Cryptolaryngidae, Dryophthoridae, Curculionidae, Scolytidae, and Platypodidae).  相似文献   

10.
Two morphs of the sterlet, Acipenser ruthenus, were clearly recorded in two samplings from the middle course of the Danube River in Serbia. The pooled samples comprised 47.9% pointed‐snout morphs and 52.1% blunt‐snout morphs. The most obvious differences were snout shape and length, mainly the differences in the snout area in front of the barbels. In addition to this snout difference, the two morphs also differed with regard to head lengths and the pre‐ocular, pre‐dorsal and post‐dorsal areas. The determination of morphs is not exclusively related to either location or body size as sources of this mode of variability, although it seems that it is easier to detect these in larger size sterlet.  相似文献   

11.
Similar morphologies between species may be due to shared ancestry or convergent evolution . Understanding instances of morphological and ecological convergence is central to evolutionary ecology because they help us understand the fit between organism and environment. Two species of stream-dwelling natricine snakes, Thamnophis rufipunctatus and Nerodia harteri present a model system for studying ecological and morphological convergence and adaptation. The species are allopatric and both live in shallow riffles in streams and forage visually for fish. We studied morphological similarity, trait evolution and functional significance of ecologically relevant traits in these and related species, and used mitochondrial DNA sequences for the ND4 gene to estimate their phylogenetic relationships. Character mapping of head length and head width supported the hypothesis of independent evolution of head shape in T .  rufipunctatus and N .  harteri . The elongate snout is a derived trait in these two taxa that is associated with reduced hydrodynamic drag on the snakes' heads when in a swift current, compared to other species with the ancestral blunt snout. We hypothesize that lower hydrodynamic drag facilitates prey capture success in these species that are known to forage by holding their position in currents and striking at fish prey. The elongate snout morphology has also resulted in a diminished binocular vision field in these snakes, contrary to the hypothesis that visually orientated snakes should exhibit relatively greater binocular vision. Convergent evolution of the long snout and reduced hydrodynamic drag in T. rufipunctatus and N. harteri are consistent with the hypothesis that the long snout is an adaptation to foraging in a swift current.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 363–371.  相似文献   

12.
红锥家系遗传变异与优良家系选择   总被引:4,自引:0,他引:4  
为选择红锥(Castanopsis hystrix)优良家系,对2–11年生红锥家系的生长性状和遗传参数进行了研究分析。结果表明,家系间在树高、胸径和单株材积上的差异达显著或极显著水平,家系的树高、胸径和单株材积受中等或中等以上遗传控制,具有很强的家系和家系内单株选择潜力;家系的单株材积变异幅度较大,胸径居中,树高的较小,显示出红锥家系间存在着丰富的变异;家系和单株遗传力随林龄的增大逐渐变小,到7–9年生时逐渐稳定。年度生长性状的相关分析表明,树高、胸径和单株材积的遗传相关系数随林龄逐渐增大,到7年生时最大,分别达到0.9602、0.9340和0.9849,之后趋于稳定,因此,7年生可作为早期选择的适合年龄。结合早期选择及形质指标,11年生时最终选择出优良家系10个,其平均树高、胸径和单株材积分别为13.95 m、14.34 cm和0.1229 m3,平均遗传增益分别为12.24%、18.69%和51.59%,其通直度、圆满度、分枝角度、最大分枝、冠幅、枝下高等形质指标也提高7.71%~12.94%。  相似文献   

13.
Cutaneous taste buds in cod   总被引:1,自引:0,他引:1  
The distribution of cutaneous taste buds was determined quantitatively in larvae, juveniles and young adults of cod, using scanning electron microscopy. Changes in these distributions associated with development were followed in laboratory reared fish. Taste buds were first seen on the snout and lips of cod at a total length of 8 mm, and on the barbel at a length of 22 mm. The highest taste bud densities were seen at a length of around 90 mm, and subsequently declined on the barbel and pelvic fins with further growth. In these late 0-group fish, mean taste bud densities over much of the head, e.g. throat, dentary and sides of the snout were <100 mm−2. On the tip of the snout and the lips, mean densities were in the region of 350–400 mm−2, while on projecting parts of the fish, especially the barbel, anterior naris flap and extremities of the fins, spot densities occasionally exceeded 1000 mm−2 at some sites. Mean taste bud diameter increased rapidly from 2.23μ± 0.35 μm (S.D.) at a length of 22 mm to 7.19 ± 0.23 μm at 90 mm length, with a much slower increase to about 8 μm associated with a further doubling in body length. These changes indicate a phase of rapid proliferation and growth in size of cutaneous taste buds in the period preceding the adoption of a benthic habit in their first summer. The presence of high taste bud densities on the barbel and pelvic fins in particular appears to correlate with the known feeding behaviour of cod.  相似文献   

14.
中国鲨类脑颅的研究   总被引:2,自引:0,他引:2  
本文解剖观察了我国有代表性的鲨类脑颅共32种,分隶于8目14科24属。研究结果认为鲨类的脑颅共可分为9个式型和12个亚型。现存虎鲨目、须鲨目的鲸鲨科和扁鲨目吻软骨缺如,六鳃鲨目、须鲨目、角鲨目和锯鲨目均具一吻软骨,它们是一些古老和一些特化的类群。现存大多数种类均具3根吻软骨。在各不同分类阶元常有其不同的形态特征,可作为分类依据之一,亦可显示其亲缘关系。  相似文献   

15.
16.
Understanding the origins of biodiversity demands consideration of both extrinsic (e.g., ecological opportunity) and intrinsic (e.g., developmental constraint) factors. Here, we use a combination of phylogenetic and genetic tools to address the origin of novelty in African cichlids. In particular, we focus on an extreme hypertrophied snout that is structurally integrated with the upper jaw. We show that this bizarre trait has evolved independently in at least two distinct and ecologically successful cichlid clades. We find that snout dimensions are decoupled both phenotypically and genetically, which has enabled it to evolve independently in multiple directions. Further, patterns of variation among species and within a genetic mapping pedigree suggest that relative to snout length, depth is under greater genetic and/or developmental constraint. Models of evolution suggest that snout shape is under selection for feeding behavior, with snout depth being important for algae scraping and snout length for sand sifting. Indeed, the deep snout of some algivores is achieved via an expansion of the intermaxillary ligament, which is important for jaw stability and may increase feeding performance. Overall, our data imply that the evolution of exaggerated snout depth required overcoming a genetic/developmental constraint, which led to expanded ecological opportunity via foraging adaptation.  相似文献   

17.
The feeding apparatus of Syngnathidae, with its elongate tubular snout and tiny, toothless jaws, is highly specialized for performing fast and powerful pivot feeding. In addition, the prolonged syngnathid parental care probably enables the juveniles to be provided with a feeding apparatus that resembles the one in adults, both in morphology and function. In this study, a landmark‐based geometric morphometric analysis was carried out on the head of syngnathid representatives in order to (1) examine to what degree pipefish shape variation is different from that of seahorses; (2) determine whether the high level of specialization reduces the amount of intraspecific morphological variation found within the family; and (3) elucidate whether or not important shape changes occur in the seahorse head during postrelease ontogeny. We found that (1) there is a significant shape difference between head shape of pipefish and seahorse: the main differences concern snout length and height, position and orientation of the pectoral fin base, and height of the head and opercular bone. We hypothesize that this might be related to different prey capture kinematics (long snout with little head rotation versus short snout with large head rotation) and to different body postures (in line with the head versus vertical with a tilted head) in pipefishes and seahorses; (2) both pipefishes and seahorses showed an inverse relation between relative snout length and intraspecific variation and although pipefishes show a large diversity in relative snout elongation, they are more constrained in terms of head shape; and (3) the head of juvenile Hippocampus reidi specimens still undergoes gradual shape changes after being expelled from the brood pouch. Ontogenetic changes include lowering of the snout and head but also differences in orientation of the preopercular bone and lowering of the snout tip. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
为挖掘辣木(Moranga oleifera)优良种质资源,对30个优良单株家系的叶片表型性状进行研究。结果表明,除叶形外,辣木不同家系间的叶柄和叶片颜色、复叶数、复叶柄长度和直径、复叶间距、叶长、叶宽均存在不同程度的差异。复叶数与复叶柄长度和直径、复叶间距、叶长、叶宽呈极显著正相关;主成分分析表明,叶长、叶宽、复叶柄长度和直径、复叶间距、叶柄和叶片颜色是区分辣木不同家系最主要的叶片性状指标。聚类分析结果表明,30个辣木家系可分为3大类,叶片表型性状存在显著差异的家系的遗传距离较远。因此,叶柄和叶片颜色、复叶数、复叶柄长度和直径、复叶间距、叶长、叶宽将为直观区分辣木家系提供参考。  相似文献   

19.
测定了乐山棒花鱼(Abbottina kiatingensis)繁殖期形态特征包括体长、头长、头宽、头高、吻长、眼后头长、眼径、眼间距、体高、尾柄长、尾柄高、尾鳍长、背鳍基前距、背鳍基长、腹鳍基前距、腹臀间距、体重和去内脏体重的两性异形和雌性个体生育力。繁殖期雄性个体的数量显著多于雌性个体,雌雄两性个体的体长差异不显著。特定体长的雌性个体的头长、头宽、头高、吻长、眼后头长、尾柄高、背鳍基前距、背鳍基长和去内脏体重显著小于雄性个体,其余指标不存在明显的差异。回归分析表明,乐山棒花鱼的怀卵数量与体长和体重回归关系显著,雌性通过个体大小(体长和体重)的增加来提高个体生育力。  相似文献   

20.
The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号