首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual components of multilocus fingerprints from man produced by (CAC)5/(GTG)5 oligonucleotides have been scrutinized to characterize their peculiar properties. Successful cloning and changes occurring during the propagation of recombinant simple repetitive DNA in prokaryotic hosts are described. The isolated locus-specific probes were characterized with respect to their formal (and population genetic) properties and their usefulness for individualization and linkage studies. The localization was determined on chromosomes 8, 9, 11, and 22. Repeat flanking sequences were characterized and analyzed for their coding potential because of significant open reading frames and apparent evolutionary conservation among vertebrates. The organization of the repeats and their flanking regions in the human genome is discussed with respect to the sequence (fine) architecture that developed during evolution. Classical “minisatellite” sequences were not detected near hypervariable (cac)n/(gtg)n repeats. The singlecopy probes described herein are a convenient complement to the oligonucleotides employed for multilocus fingerprinting. Many practical applications are apparent.  相似文献   

2.
We have previously identified in human fibroblasts a multisubunit protein (designated PGB) that specifically bound single-stranded G-rich microsatellite DNA sequences. PGB was later found to be identical, or closely related to translin, an octameric protein that bound single-stranded DNA consisting of sequences flanking chromosomal translocations. Here, we report that recombinant translin binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n, with higher affinities (Kdis approximately = 2 nM and Kdis approximately = 12.5 nM, respectively, in 100 mM NaCl and 25 degrees C) than the affinity with which it binds a prototypical sequence flanking translocation sites (Kdis approximately = 23 nM). Translin also binds d(GT)n and d(TTAGGG)n overhangs linked to double-stranded DNA with equilibrium constants in the nanomolar range. Formation of DNA quadruplexes by the d(TTAGGG)n repeats inhibits their binding to translin. A further study of the binding parameters revealed that the minimal length of d(GT)n and d(TTAGGG)n oligonucleotides that a translin octamer can bind is 11 nucleotides, but that such oligonucleotides containing up to 30 nucleotides can bind only a single translin octamer. However, the oligonucleotides d(GT)27 and d(TTAGGG)9 bind two octamers with negative cooperativity. Translin does not detectably bind single-stranded d(GT)n sequences embedded within double-stranded DNA. Based on our data, we propose that translin might be involved in the control of recombination at d(GT)n.d(AC)n microsatellites and in telomere maintenance.  相似文献   

3.
To identify CA repeats in genomic sequences which had been previously subcloned into plasmids, we performed PCR using a (CA)n primer and a flanking vector primer on the genomic inserts. By incorporation of a restriction enzyme site into the (CA)n primer, we have been able to subclone the genomic DNA so that the sequence flanking the CA repeat is readily determined. Primers can then be designed to amplify across the CA repeat in patient DNA samples. Application of this technique to genomic DNAs surrounding the upstream "brain" promoter of the dystrophin gene has led to the discovery of four new CA repeats. Three of these repeats are highly polymorphic, with PICs ranging from .586 to .768. The location of these markers at the extreme 5' terminus of the dystrophin gene, together with their high degree of polymorphism and ease of assay, makes them ideal for linkage analysis in families with Duchenne muscular dystrophy.  相似文献   

4.
Organization, structure, and polymorphisms of the human profilaggrin gene   总被引:8,自引:0,他引:8  
Profilaggrin is a major protein component of the keratohyalin granules of mammalian epidermis. It is initially expressed as a large polyprotein precursor and is subsequently proteolytically processed into individual functional filaggrin molecules. We have isolated genomic DNA and cDNA clones encoding the 5'- and 3'-ends of the human gene and mRNA. The data reveal the presence of likely "CAT" and "TATA" sequences, an intron in the 5'-untranslated region, and several potential regulatory sequences. While all repeats are of the same length (972 bp, 324 amino acids), sequences display considerable variation (10-15%) between repeats on the same clone and between different clones. Most variations are attributable to single-base changes, but many also involve changes in charge. Thus, human filaggrin consists of a heterogeneous population of molecules of different sizes, charges, and sequences. However, amino acid sequences encoding the amino and carboxyl termini are more conserved, as are the 5' and 3' DNA sequences flanking the coding portions of the gene. The presence of unique restriction enzyme sites in these conserved flanking sequences has enabled calculations on the size of the full-length gene and the numbers of repeats in it: depending on the source of genomic DNA, the gene contains 10, 11, or 12 filaggrin repeats that segregate in kindred families by normal Mendelian genetic mechanisms. This means that the human profilaggrin gene system is also polymorphic with respect to size due to simple allelic differences between different individuals. The amino- and carboxyl-terminal sequences of profilaggrin contain partial or truncated repeats with unusual un-filaggrin-like sequences on the termini.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Unpaired structures in SCA10 (ATTCT)n.(AGAAT)n repeats   总被引:4,自引:0,他引:4  
A number of human hereditary diseases have been associated with the instability of DNA repeats in the genome. Recently, spinocerebellar ataxia type 10 has been associated with expansion of the pentanucleotide repeat (ATTCT)(n).(AGAAT)(n) from a normal range of ten to 22 to as many as 4500 copies. The structural properties of this repeat cloned in circular plasmids were studied by a variety of methods. Two-dimensional gel electrophoresis and atomic force microscopy detected local DNA unpairing in supercoiled plasmids. Chemical probing analysis indicated that, at moderate superhelical densities, the (ATTCT)(n).(AGAAT)(n) repeat forms an unpaired region, which further extends into adjacent A+T-rich flanking sequences at higher superhelical densities. The superhelical energy required to initiate duplex unpairing is essentially length-independent from eight to 46 repeats. In plasmids containing five repeats, minimal unpairing of (ATTCT)(5).(AGAAT)(5) occurred while 2D gel analysis and chemical probing indicate greater unpairing in A+T-rich sequences in other regions of the plasmid. The observed experimental results are consistent with a statistical mechanical, computational analysis of these supercoiled plasmids. For plasmids containing 29 repeats, which is just above the normal human size range, flanked by an A+T-rich sequence, atomic force microscopy detected the formation of a locally condensed structure at high superhelical densities. However, even at high superhelical densities, DNA strands within the presumably compact A+T-rich region were accessible to small chemicals and oligonucleotide hybridization. Thus, DNA strands in this "collapsed structure" remain unpaired and accessible for interaction with other molecules. The unpaired DNA structure functioned as an aberrant replication origin, in that it supported complete plasmid replication in a HeLa cell extract. A model is proposed in which unscheduled or aberrant DNA replication is a critical step in the expansion mutation.  相似文献   

6.
Microsatellites are widely distributed in plant genomes and comprise unstable regions that undergo mutational changes at rates much greater than that observed for non-repetitive sequences. They demonstrate intrinsic genetic instability, manifested as frequent length changes due to insertions or deletions of repeat units. Detailed analysis of 1600 clones containing genomic sequences of Vicia bithynica revealed the presence of microsatellite repeats in its genome. Based on the screening of a partial DNA library of plasmids, 13 clones harbouring (GA/TC)n tracts of various lengths of repeated motif were identified for further analysis of their internal sequence organization. Sequence analyses revealed the precise length, number of repeats, interruptions within tracts, as well as sequence composition flanking the repeat motifs. Representative plasmids containing different lengths of (GA/TC)n embedded in their original flanking sequence were used to investigate the genetic stability of the repeats. In the study presented herein, we employed a well characterised and tractable bacterial genetic system. Recultivations of Escherichia coli harbouring plasmids containing (GA/TC)n inserts demonstrated that the genetic instability of (GA/TC)n microsatellites depends highly on their length (number of repeats). These observations are in agreement with similar studies performed on repetitive sequences from humans and other organisms.  相似文献   

7.
Roles of the TGACT repeat sequence in the yeast TRP5 promoter   总被引:3,自引:0,他引:3  
Yeast genes under general amino acid control contain multiple copies of a sequence known as the TGACT repeat in the 5'-flanking DNA. The yeast TRP5 gene contains two copies of the TGACT repeat sequence in its 5'-flanking region. The upstream TGACT repeat of TRP5 is required for normal basal expression as well as derepression by general control. Synthetic oligonucleotides containing a TGACT sequence were inserted into previously constructed TRP5 control region deletion mutants. A synthetic 17-base pairs (bp) oligonucleotide containing a TGACT copy along with flanking nucleotides from HIS3 was able to restore derepression in all deletion mutants tested. The 17-bp oligonucleotide also functioned bidirectionally. Replacements in the upstream control region by synthetic oligonucleotides indicated that sequences other than the TGACT repeat are required for high basal expression. Replacements of the downstream repeat sequence by the 17-bp oligonucleotide suggest its main role in this position is for derepressed expression. High level derepressed expression was found to correlate with the presence of two repeats.  相似文献   

8.
Polyomaviruses have repeating sequences at their origins of replication that bind the origin-binding domain of virus-encoded large T antigen. In murine polyomavirus, the central region of the origin contains four copies (P1 to P4) of the sequence G(A/G)GGC. They are arranged as a pair of inverted repeats with a 2-bp overlap between the repeats at the center. In contrast to simian virus 40 (SV40), where the repeats are nonoverlapping and all four repeats can be simultaneously occupied, the crystal structure of the four central murine polyomavirus sequence repeats in complex with the polyomavirus origin-binding domain reveals that only three of the four repeats (P1, P2, and P4) are occupied. Isothermal titration calorimetry confirms that the stoichiometry is the same in solution as in the crystal structure. Consistent with these results, mutation of the third repeat has little effect on DNA replication in vivo. Thus, the apparent 2-fold symmetry within the DNA repeats is not carried over to the protein-DNA complex. Flanking sequences, such as the AT-rich region, are known to be important for DNA replication. When the orientation of the central region was reversed with respect to these flanking regions, the origin was still able to replicate and the P3 sequence (now located at the P2 position with respect to the flanking regions) was again dispensable. This highlights the critical importance of the precise sequence of the region containing the pentamers in replication.  相似文献   

9.
We have developed an alternative method to amplify DNA sequences flanking Tn5 transposon insertions. This method relies on the identical sequences of inverted terminal repeats, located at the 5' and 3' ends of Tn5, to determine the location and orientation of a transposon insertion within a restriction endonuclease fragment. From this information, PCR primers can be designed to selectively amplify by inverse PCR the DNA flanking one side of the transposon. This method avoids the problem of amplifying or cloning long sequences flanking Tn5. To demonstrate the applicability of this method, we generated Tn5 transposon mutants of Pseudomonas abietaniphila BKME-9 which no longer grew on dehydroabietic acid (DhA). The flanking sequence of one of the mutant (strain BKME-941) which accumulated 7-oxoDhA, was amplified.  相似文献   

10.
11.
Qu X  Ren J  Riccelli PV  Benight AS  Chaires JB 《Biochemistry》2003,42(41):11960-11967
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms. Our results reveal a pronounced enthalpy-entropy compensation for 7-amino actinomycin D binding to this family of oligonucleotides and suggest that the DNA sequences flanking the primary binding site can strongly influence ligand recognition of specific sites on target DNA molecules.  相似文献   

12.
Cyanobacterial tRNA(Leu) (UAA) intron sequences from natural populations of Nostoc and other cyanobacteria were compared. Variation between the different introns was not randomly distributed but strongly restricted by the secondary and tertiary structure of the intron. Although all Nostoc sequences examined shared high similarity, differences were observed in one stem-loop. This stem-loop could be divided into two classes, both built up from two base pairing heptanucleotide repeats. Size variation was primarily caused by different numbers of repeats, but some strains also contained additional sequences in this stem-loop not following the heptanucleotide repeat motif. Several sequences showing similarity with these additional sequences were identified in the Nostoc punctiforme genome. Furthermore, the regions flanking these sequences contained the same, or similar, heptanucleotide repeats as those flanking the corresponding sequences in the intron. It is proposed that both slipped strand mispairing during replication and homologous recombination among different loci in the genome are important processes causing variation between introns.  相似文献   

13.
14.
In order to study the mechanisms for the generation of length diversity within the 5' flanking region of the human insulin gene, we have isolated and sequenced a previously uncharacterized allele. This allele, of a size intermediate between those three already described in the literature, encompasses 1,156 base pairs (bp) and contains 81 reiterated tandem oligonucleotides of 14-15 bp each. Population analysis on 298 independently sampled individuals by Southern blotting of genomic DNA demonstrates that the polymorphic portion of the insulin 5' flanking region varies from 400 to more than 8,000 nucleotides, being encoded by from 30 to over 540 oligomeric repeats. Length variability 5' to the insulin gene is a result primarily of unequal crossing over, which generates an expansion or contraction in the number of tandem repeat units per chromosome. A similar mechanism probably accounts for nondispersed reiterated sequences at other loci in the human genome.  相似文献   

15.
16.
Expansion of (AGC)n repeats has been associated with genetic disorders called triplet-repeat diseases such as Huntington's disease (HD), myotonic muscular dystrophy (DM) and Kennedy's disease. To gain insight into the abnormal behavior of these repeats, we studied their structural properties in supercoiled DNA. Chemical probing revealed that, under physiological salt and pH conditions, Zn2+ or Co2+ ions induce (AGC)n repeats to adopt a novel non-B DNA structure in which all cytosine but none of adenine residues in either strand become unpaired. The minimum size of (AGC)n repeat that could form this structure independently of neighboring sequences is a single unit of double-stranded trinucleotide, 5'AGC3'/5'GCT3'. Other trinucleotide units of the same nucleotide composition, 5'CAG3'/5'CTG3' or 5'GCA3'/5'TGC3', do not form non-B DNA structures. This unusual DNA structural properly adopted by a single 5'AGC3'/5'GCT3' trinucleotide may contribute to expansion of (AGC)n sequences in triplet-repeat diseases.  相似文献   

17.
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.  相似文献   

18.
19.
20.
MDG is a very important component of the Drosophila genome. MDG have many sites of localisation in chromosomes and can change their localisation. Perhaps the process of MDG integration has some specificity. To study this problem we sequenced the flanking region of MDG1 DNA. The analysis of this sequences reveals the following features. 1. The 5'-flanking sequences contain 7 TATA-boxex, 5 of which form a cluster. 2. The 3'-flanking sequences contain TTTAAA block which is similar to TATA-box for alpha- and gamma-casein genes of mammals. 3. The flanking region are rich in repeated sequences, the longest of which TCCTCCT (R) and TTCTTC (R2) are on the 5'-flank and on the 3'-flank respectively, so that the whole structure is: 5'-R1NNR1-MDG1-R2NNR2-3', where N is some nucleotide. 5'-flanking sequences are AT-rich, while the 3'-flank contains 10 consecutive thymidines 4 nucleotides apart from MDG1. The MDG1 and MDG "17.6" share several common repeats in the flanking sequences, the longest of which TACTTACAT is 63 bases upstream MDG1 and 11 bases upstream MDG "17.6". This sequence differs strongly from the consensus enhancer sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号