首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor. However, we show here that GrpE can accelerate substrate release from DnaK exclusively in the presence of ATP. In addition, GrpE prevented the association of peptide substrates with DnaK through an activity of its N-terminal 33 amino acids. A ternary complex of GrpE, DnaK, and a peptide substrate could be observed only when the peptide binding to DnaK precedes GrpE binding. Furthermore, we demonstrate that GrpE slows down the release of a protein substrate, sigma(32), from DnaK in the absence of ATP. These findings suggest that the ATP-triggered dissociation of GrpE and substrates from DnaK occurs in a concerted fashion.  相似文献   

5.
Li X  Lu AL 《Journal of bacteriology》2001,183(21):6151-6158
The mutY homolog gene (mutY(Dr)) from Deinococcus radiodurans encodes a 39.4-kDa protein consisting of 363 amino acids that displays 35% identity to the Escherichia coli MutY (MutY(Ec)) protein. Expressed MutY(Dr) is able to complement E. coli mutY mutants but not mutM mutants to reduce the mutation frequency. The glycosylase and binding activities of MutY(Dr) with an A/G-containing substrate are more sensitive to high salt and EDTA concentrations than the activities with an A/7,8-dihydro-8-oxoguanine (GO)-containing substrate are. Like the MutY(Ec) protein, purified recombinant MutY(Dr) expressed in E. coli has adenine glycosylase activity with A/G, A/C, and A/GO mismatches and weak guanine glycosylase activity with a G/GO mismatch. However, MutY(Dr) exhibits limited apurinic/apyrimidinic lyase activity and can form only weak covalent protein-DNA complexes in the presence of sodium borohydride. This may be due to an arginine residue that is present in MutY(Dr) at the position corresponding to the position of MutY(Ec) Lys142, which forms the Schiff base with DNA. The kinetic parameters of MutY(Dr) are similar to those of MutY(Ec). Although MutY(Dr) has similar substrate specificity and a binding preference for an A/GO mismatch over an A/G mismatch, as MutY(Ec) does, the binding affinities for both mismatches are slightly lower for MutY(Dr) than for MutY(Ec). Thus, MutY(Dr) can protect the cell from GO mutational effects caused by ionizing radiation and oxidative stress.  相似文献   

6.
7.
8.
The role of nucleotide in controlling the pre-steady-state kinetics of peptide binding to the Escherichia coli 70-kDa molecular chaperone DnaK was investigated using stopped-flow fluorescence. The peptide used in this study, fVSV13 (representing amino acids 490-502 of the vesicular stomatitis virus glycoprotein), was dansylated specifically at its N-terminus. We found that (i) between 17 and 35 degrees C in the presence of ATP the second-order rate constant (k(on)) for fVSV13 binding to DnaK exhibited almost no dependence on temperature and did not deviate significantly from 3.8 x 10(5) M(-1) s(-1). In contrast, over the same temperature range in the presence of ADP, k(on) increased by a factor of 32 (7.3 x 10(4) to 2.3 x 10(6) M(-1) s(-1)); and (ii) ATP increased the apparent first-order rate constant for the release of fVSV13 from preformed DnaK-fVSV13 complexes by several orders of magnitude relative to ADP. The activation energy parameters for fVSV13 binding to and dissociation from DnaK are compared to the activation parameters for the binding of an unrelated peptide to DnaK and are also discussed in terms of an open-to-closed equilibrium in the polypeptide-binding domain. On the basis of this comparison, it is suggested that the activation entropy term deltaS++, which is related to the structure of the DnaK-bound peptide or the degree of solvation of the peptide, is a controlling factor in the kinetics of peptide binding to DnaK.  相似文献   

9.
10.
We have reported that the hsp70 chaperone DnaK from Escherichia coli might assist protein folding by catalyzing the cis/trans isomerization of secondary amide peptide bonds in unfolded or partially folded proteins. In this study a series of fatty acylated benzamido inhibitors of the cis/trans isomerase activity of DnaK was developed and tested for antibacterial effects in E. coli MC4100 cells. N(alpha)-[Tetradecanoyl-(4-aminomethylbenzoyl)]-l-asparagine is the most effective antibacterial with a minimal inhibitory concentration of 100 +/- 20 microg/ml. The compounds were shown to compete with fluorophore-labeled sigma(32)-derived peptide for the peptide binding site of DnaK and to increase the fraction of aggregated proteins in heat-shocked bacteria. Despite its inability to serve as a folding helper in vivo a DnaK-inhibitor complex was still able to sequester an unfolded protein in vitro. Structure activity relationships revealed a distinct dependence of DnaK-assisted refolding of luciferase on the fatty acyl chain length, whereas the minimal inhibitory concentration was most sensitive to the structural nature of the benzamido core. We conclude that the isomerase activity of DnaK is a major survival factor in the heat shock response of bacteria and that small molecule inhibitors can lead to functional inactivation of DnaK and thus will display antibacterial activity.  相似文献   

11.
12.
Halder S  Banerjee S  Parrack P 《The FEBS journal》2008,275(19):4767-4772
The CIII protein of bacteriophage lambda exhibits antiproteolytic activity against the ubiquitous metalloprotease HflB (FtsH) of Escherichia coli, thereby stabilizing the lambdaCII protein and promoting lysogenic development of the phage. CIII also protects E.coli sigma(32), another substrate of HflB. We have recently shown that the protection of CII from HflB by CIII involves direct CIII-HflB binding, without any interaction between CII and CIII [HalderS, DattaAB & Parrack P (2007) J Bacteriol189, 8130-8138]. Such a mode of action for lambdaCIII would be independent of the HflB substrate. In this study, we tested the ability of CIII to protect sigma(32) from HflB digestion. The inhibition of HflB-mediated proteolysis of sigma(32) by CIII is very similar to that of lambdaCII, characterized by an enhanced protection by the core CIII peptide CIIIC (amino acids 14-41 of lambdaCIII) and a lack of interaction between sigma(32) and CIII.  相似文献   

13.
14.
15.
The evolutionarily conserved DnaJ proteins are essential components of Hsp70 chaperone systems. The DnaJ homologue of Escherichia coli associates with chaperone substrates and mediates their ATP hydrolysis-dependent locking into the binding cavity of its Hsp70 partner, DnaK. To determine the substrate specificity of DnaJ proteins, we screened 1633 peptides derived from 14 protein sequences for binding to E.coli DnaJ. The binding motif of DnaJ consists of a hydrophobic core of approximately eight residues enriched for aromatic and large aliphatic hydrophobic residues and arginine. The hydrophobicity of this motif explains why DnaJ itself can prevent protein aggregation. Although this motif shows differences from DnaK's binding motif, DnaJ and DnaK share the majority of binding peptides. In contrast to DnaK, DnaJ binds peptides consisting of L- and D-amino acids, and therefore is not restricted by backbone contacts. These features allow DnaJ to scan hydrophobic protein surfaces and initiate the functional cycle of the DnaK system by associating with hydrophobic exposed patches and subsequent targeting of DnaK to these or to hydrophobic patches in spatial neighbourhood.  相似文献   

16.
Hsp70 chaperones assist protein folding processes through nucleotide-controlled cycles of substrate binding and release. In our effort to understand the structure-function relationship within the Hsp70 family of proteins, we characterized the Escherichia coli member of a novel Hsp70 subfamily, HscC, and identified considerable differences to the well studied E. coli homologue, DnaK, which together suggest that HscC is a specialized chaperone. The basal ATPase cycle of HscC had k(cat) and K(m) values that were 8- and 10,000-fold higher than for DnaK. The HscC ATPase was not affected by the nucleotide exchange factor of DnaK GrpE and stimulated 8-fold by DjlC, a DnaJ protein with a putative transmembrane domain, but not by other DnaJ proteins tested. Substrate binding dynamics and substrate specificity differed significantly between HscC and DnaK. These differences are explicable by distinct structural variations. HscC does not have general chaperone activity because it did not assist refolding of a denatured model substrate. In vivo, HscC failed to complement temperature sensitivity of DeltadnaK cells. Deletion of hscC caused a slow growth phenotype that was suppressed after several generations. Triple knock-outs of all E. coli genes encoding Hsp70 proteins (DeltadnaK DeltahscA DeltahscC) were viable, indicating that Hsp70 proteins are not strictly essential for viability. An extensive search for DeltahscC phenotypes revealed a hypersensitivity to Cd(2+) ions and UV irradiation, suggesting roles of HscC in the cellular response to these stress treatments. Together our data show that the Hsp70 structure exhibits an astonishing degree of adaptive variations to accommodate requirements of a specialized function.  相似文献   

17.
18.
DnaK is a molecular chaperone that promotes cell survival during stress by preventing protein misfolding. The chaperone activity is regulated by nucleotide binding and hydrolysis events in the N-terminal ATPase domain, which in turn mediate substrate binding and release in the C-terminal substrate binding domain. In this study we determined that ATP hydrolysis was the rate limiting step in the ATPase cycle of Agrobacterium tumefaciens DnaK (Agt DnaK); however the data suggested that Agt DnaK had a significantly lower affinity for ATP than Escherichia coli DnaK. We show for the first time that Agt DnaK was very effective at preventing thermal aggregation of malate dehydrogenase (MDH) in a concentration dependent manner. This is in contrast to E. coli DnaK which was ineffective at preventing thermal aggregation of MDH. A mutant Agt DnaK-V431F, with a blocked hydrophobic pocket in the substrate binding domain, was unable to suppress the thermosensitivty of an E. coli dnaK103 deletion strain. However the mutation did not inhibit Agt DnaK-V431F from preventing the thermal aggregation of MDH. The oligomeric state of Agt DnaK was studied using size exclusion chromatography. We demonstrated that dilution of the Agt DnaK protein, the addition of ATP and the removal of the 10kDa C-terminal alpha-helical subdomain reduced higher order associations but did not abrogate dimerisation. Our research implies that the C-terminal alpha-helical subdomain is involved in higher order associations, while the substrate binding domain is possibly involved in dimerisation.  相似文献   

19.
HscA, a specialized bacterial Hsp70-class molecular chaperone, interacts with the iron-sulfur cluster assembly protein IscU by recognizing a conserved LPPVK sequence motif. We report the crystal structure of the substrate-binding domain of HscA (SBD, residues 389-616) from Escherichia coli bound to an IscU-derived peptide, ELPPVKIHC. The crystals belong to the space group I222 and contain a single molecule in the asymmetric unit. Molecular replacement with the E.coli DnaK(SBD) model was used for phasing, and the HscA(SBD)-peptide model was refined to Rfactor=17.4% (Rfree=21.0%) at 1.95 A resolution. The overall structure of HscA(SBD) is similar to that of DnaK(SBD), although the alpha-helical subdomain (residues 506-613) is shifted up to 10 A relative to the beta-sandwich subdomain (residues 389-498) when compared to DnaK(SBD). The ELPPVKIHC peptide is bound in an extended conformation in a hydrophobic cleft in the beta-subdomain, which appears to be solvent-accessible via a narrow passageway between the alpha and beta-subdomains. The bound peptide is positioned in the reverse orientation of that observed in the DnaK(SBD)-NRLLLTG peptide complex placing the N and C termini of the peptide on opposite sides of the HscA(SBD) relative to the DnaK(SBD) complex. Modeling of the peptide in the DnaK-like forward orientation suggests that differences in hydrogen bonding interactions in the binding cleft and electrostatic interactions involving surface residues near the cleft contribute to the observed directional preference.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号