首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2.
Objectives: High‐throughput chemical and biochemical technologies are now exploited by modern pharmacology and toxicology to synthesize a multitude of new molecules with bioactive potential, or to isolate them from living matter. Testing molecules in cell systems on a large scale, however, is a rate‐limiting step in drug discovery or in toxicity assessment. In this study, we developed a low‐cost high‐throughput method for first‐level screening of cytotoxic molecules. Materials and methods: We used microplate spectrophotometry to measure growth kinetics of human tumour cells that grow in suspension (Molt3) or adherent to the plastic surface of culture wells (HeLa) in standard RPMI medium. Cells were treated with colchicin, idarubicin or paclitaxel under various treatment schedules. The effects were quantified and compared with those measured by optical microscopy using the trypan blue dye exclusion method to reveal dead cells. Results: Proliferation kinetics of tumour cells can be quantified by measuring variations in optical densities of cell samples at 410 and 560 nm wavelengths. For cells that grow in suspension, one single reading at 730 nm may be sufficient to reconstruct growth curves that parallel those obtained by direct cell counting. Effects of the cytotoxic treatments could also be quantified and results compared very favourably with those obtained using standard techniques. Conclusions: Microplate spectrophotometry is a robust and sensitive method to monitor growth of animal cell populations both in the absence and in the presence of cytotoxic drugs. This method implements existing technologies and can be fully automated.  相似文献   

3.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   

4.
We examined the in vitro and in vivo effects of paraquat on the cell cycle. After we exposed paraquat to the cultured cell (MDCK), we examined cell kinetics by flow cytometry with BrdU-PI double staining. And we administered paraquat intravenously to the rats, we collected and separated rat's liver and pulmonary cells, and we examined the cell kinetics by same method. Consequently our study found that the cells in the S-phase were noted to be abundant, and we suggested that paraquat apparently arrested the cell cycle at S time, and that DNA damage was importance in the mechanism of paraquat toxicity.  相似文献   

5.
Previous report indicated that Interleukin-2 (IL-2) is able to inhibit the growth of IL-2-receptor-positive cancer cell lines without any involvement of the immune system, through IL-2-induced alterations of the cell cycle kinetics. In this study we provide evidence that IL-2 exerts anti-proliferative effect on three human malignant mesothelioma (MMe) cells in vitro, while no effects were observed on normal human mesothelial cell (HMC) primary cultures. The growth inhibitory effect of IL-2 on neoplastic cells appeared to depend on the baseline proliferative status of these cells. Indeed, in highly proliferating MMe cells, we observed a reduction of malignant cells in the S-phase of the cell cycle, with an accumulation in G0/G1, followed by apotosis for longer incubations or exposure to higher doses. On the contrary, in MMe cells proliferating at lower rate, IL-2 induces only a late cytotoxic effect, leading to apoptosis, without significantly affecting the cell cycle. IL-2Rbeta mRNA was detectable by RT-PCR in all MMe cells, IL-2Ralpha mRNA in one only out the three assayed and IL-2Rgamma mRNA in none. In addition, mRNA specific for the IL-2Rbeta-associated Jak-1 tyrosine kinase was expressed in all MMe cell lines, further suggesting that IL-2Rbeta may play a role in the observed effects. Very low, albeit detectable, levels of IL-2Rbeta chain appeared to be expressed at the cell surface of MMe cells by indirect immunofluorescence and FACS analyses. Finally, Ca(++) fluxes were rapidly induced when MMe cells were exposed to exogenous IL-2.  相似文献   

6.
The cell cycle kinetics of bladder urothelial cells regenerating after partial cystectomy were investigated in 96 female Wistar rats using the percentage labelled mitoses method. In the area of resection a mean cell cycle time (TC) of 15 h was determined. The DNA synthesis phase (TS) lasted 6 h and the premitotic-postsynthetic phase together with the mitosis phase (TG2 + M) 1.5 h, thus giving a presynthetic-postmiotic phase (TG1) of 7.5 h. Similar values were found for the urothelial cells in the stump: the mean cycle time measured 14 h, the TS-phase 6 h, the TG6 + M-phase 2 h and the TG1-phase 6 h. These data are discussed with respect to known cell cycle parameters of bladder urothelium regenerating in response to cytotoxic agents and of neoplastic urothelial cells. The reported findings provide a basis for further investigations using weak carcinogens and threshold doses of potent carcinogens to test the working hypothesis that stimulation of proliferation following partial cystectomy is capable of initiating, accelerating and/or potentiating carcinogenic cell transformation in the urinary bladder.  相似文献   

7.
Incorporation of bromodeoxyuridine (BrdU) during DNA replication is frequently used for cell cycle analysis. The flow cytometric BrdU/Hoechst quenching technique is conducive to high-resolution assessment of cell cycle kinetics, but requires continuous BrdU treatment, which may have cytostatic or cytotoxic effects. Here, we have examined the impact of BrdU on the proliferation of BT474 and SK-BR-3 breast cancer cell lines and compared the observed effects with cell proliferation of RT4 and J82 bladder carcinoma cells, previously described to be sensitive and insensitive to BrdU, respectively. Both uni- and bi-parametric DNA measurements were performed to identify BrdU-induced alterations in the S-phase fraction and in cell cycle progression. An annexinV/propidium iodide (PI) assay was used to identify potential induction of apoptosis by BrdU. Proliferative activity in BT474, SK-BR-3, and RT4 cultures was reduced in different cell cycle phases due to continuous treatment with 60, 5.0, and 3.5 micro m BrdU. This effect, which was not found in J82 cultures, was dependent on exposure time (96 versus 48 h) and was also dose-dependent for RT4 and SK-BR-3. BrdU application does not induce apoptosis or necrosis as revealed with the annexin V/PI assay. We concluded that continuous BrdU treatment did not affect cell viability, but essentially alters cell cycle progression in three out of four cell lines tested. Cell-type specific validation of the feasibility of the powerful BrdU/Hoechst quenching technique is required and recommended.  相似文献   

8.
A discrete time cell cycle kinetics model is developed to account for the effects of cytotoxic chemotherapy, particularly including the existence of cells destined to die. A model structure is determined from related experiments, leaving key parameter values undetermined. These values are found by determining the best least squares fit of the predicted to the observed DNA distribution data at a series of time intervals. The numerical methods include separable least squares, linear inequality constrained least squares and the Gauss--Newton method. This approach is applied to an experiment in which the Ehrlich ascites tumour was given a single dose of bleomycin. The results include several different parameters, including the age response function and a time series of cell age and DNA distributions, which can be used as a basis for further treatment.  相似文献   

9.
A discrete time cell cycle kinetics model is developed to account for the effects of cytotoxic chemotherapy, particularly including the existence of cells destined to die. A model structure is determined from related experiments, leaving key parameter values undetermined. These values are found by determining the best least squares fit of the predicted to the observed DNA distribution data at a series of time intervals. the numerical methods include separable least squares, linear inequality constrained least squares and the Gauss-Newton method. This approach is applied to an experiment in which the Ehrlich ascites tumour was given a single dose of bleomycin. the results include several different parameters, including the age response function and a time series of cell age and DNA distributions, which can be used as a basis for further treatment.  相似文献   

10.
The Hedgehog (Hh) pathway regulates proliferation in a variety of tissues, however its specific effects on the cell cycle are unclear. During retinal proliferation in particular, the role of Hh has been controversial, with studies variably suggesting a stimulatory or an inhibitory effect on proliferation. Our recent data provide an underlying mechanism, which reconciles these different views. We showed that Hh signaling in the retina accelerates the G1 and G2 phases of the cell cycle and then pushes these rapidly dividing cells out of the cell cycle prematurely. From this and other evidence, we propose that Hh converts quiescent retinal stem cells into fast-cycling transient amplifying progenitors that are closer to cell cycle exit and differentiation. This is, we suggest, likely to be a general role of Hh in the nervous system and other tissues. This function of Hh in cell cycle kinetics and cell cycle exit may have implications for tumorigenesis and brain evolution.  相似文献   

11.
Abstract. In this paper we describe the application of a non-radioactive DNA double labelling and staining method to an analysis of cell proliferation kinetics by flow cytometry, aimed at the direct measurement of recruitment rates in cell cultures. The method is based on the application of two halogenated deoxyuridines: iododeoxyuri-dine (IdUrd) and chlorodeoxyuridine (CldUrd) which are incorporated into DNA synthesizing cells. By applying two commercially available monoclonal antibodies both deoxyuridines can be detected separately. To measure recruitment all proliferating cells in a plateau phase culture were labelled first with IdUrd applied during a time interval approximately equal to the cell cycle time. Subsequently, recruitment induced by a medium change was analysed by flow cytometric assessment of incorporation of CldUrd in cells which had not taken up IdUrd.
Experiments designed to determine the toxicity of continuous labelling with IdUrd in different concentrations and of pulse labelling with CldUrd showed that there was no effect on the progression of cells through the cell cycle. The aim of this study is to test the sensitivity of the procedure to detect changes in proliferation kinetics, in particular the entrance of resting cells into the S phase. Although the cell culture model used is very simple, the results demonstrate clearly that a low rate of recruitment can be detected. It is suggested that the procedure described here is specific and sensitive enough to quantify changes in cell proliferation in tumours induced by various treatments and has advantages over other methods, which measure recruitment indirectly, or directly by using two radioactive thymidines.  相似文献   

12.
TNF-alpha plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-alpha induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-alpha on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-alpha cytotoxicity, presumably by NF-kappaB mediated induction of protective genes. However, the cytoprotective genes involved in NF-kappaB dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-alpha inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-alpha-induced expression of the RNA binding protein p54(nrb) and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-alpha mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, p21(cip1) and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-alpha induced gene expression patterns mediating the prosurvival effect of TNF-alpha in endothelial cells.  相似文献   

13.
1-β-D-Arabinofuranosyl cytosine (ara-C) is a clinically important cytotoxic drug which is a potent inhibitor of DNA but which has a minimal effect on other cellular processes. The cytotoxic action of ara-C on mammalian cells has been suggested to be due to the chromosome aberrations induced by this compound. Using a marsupial cell line (JU56), the cells of which contain only 9 readily identified chromosomes, the different types of chromosome aberrations induced by a pulse of ara-C have been quantified, and the cell cycle dependence of the damage has been assessed. It was found that, for cells exposed in G2, both chromatid-type and chromosome-type lesions were produced. The frequency of these lesions was reduced by a chase of deoxycytidine, and there was some evidence that the initial lesions are gaps which may later be converted to true breaks. In early G2 and late S cells, lesions were produced chiefly at one chromosome locations; this location was not specifically late-replicating. At all stages of S, lesions were chiefly chromatid-type, and some exchanges occurred. The level of damage in S cells was not influences by a deoxycytidine chase. There was negligible damage in cells exposed in G1.It is suggested that the reason previous investigators have obtained very different cell cycle dependence of chromosomes damage is that the delaying effects of ara-C on cell cycle progression was not taken into account.  相似文献   

14.
Flow cytometry (FCM) permits instantaneous determination of the percentages of cells in various phases of cell cycle using BrdU-PI double staining method, and allowing rapid evaluation of the effects of irradiation and anti-cancer drugs (ACNU, ADR, BLM) on the cell kinetics. In this study, the growth inhibition and changes in the cell kinetics after irradiation and chemotherapy were examined according to the growth curve analysis and BrdU-PI method to evaluate the usefulness of BrdU-PI method for assessment of the effect of the treatments. By the conventional method based on the DNA histogram, accurate determination of S cell fraction was difficult due to overlapping of the DNA contents of G1 cells and early S cells and those of late S cells and G2 cells. BrdU-PI double staining allowed direct differentiation of G1, S, and G2 + M cells, especially between G1-S and S-G2 + M cells. The analysis of cell kinetics using BrdU is advantageous in comparison to the conventional autoradiographic methods because it allows more rapid assay with very high sensitivity. By the present BrdU method, rapid transition to the G1-S phase was observed within 4 hours after exposure to radiation and anti-cancer drugs. This initial G1 arrest induced by irradiation was confirmed for the first time by the present BrdU-PI double staining. The present method is considered to be indispensable for evaluation of the percentage of S cells in the tumor tissue and analysis of cell kinetics after irradiation and chemotherapy against cancer.  相似文献   

15.
Breast cancer is one of the most common cancers worldwide and the discovery of new cytotoxic agents is needed. Enaminones are regarded to be a significant structural motif that is found in a variety of pharmacologically active compounds however the number of studies investigating the anticancer activities of N-propargylic β-enaminones (NPEs) is limited. Herein we investigated the potential cytotoxic and apoptotic effects of 23 different NPEs (1-23) on human breast cancer cells. Cytotoxicity was evaluated via MTT assay. Apoptotic cell death and cell cycle distributions were investigated by flow cytometry. CM-H2DCFDA dye was used to evaluate cellular ROS levels. Expression levels of Bcl-2, Bax, p21, and Cyclin D1 were measured by quantitative real-time PCR. ADME properties were calculated using the ADMET 2.0 tool. NPEs 4, 9, 16, and 21 showed selective cytotoxic activity against breast cancer cells with SI values >2. NPEs induced apoptosis and caused significant changes in Bcl-2 and Bax mRNA levels. The cell cycle was arrested at the G0/G1 phase and levels of p21 and Cyclin D1 were upregulated in both breast cancer cells. ROS levels were significantly increased by NPEs, suggesting that the cytotoxic and apoptotic effects of NPEs were mediated by ROS. ADME analysis revealed that NPEs showed favorable distributions in both breast cancer cell lines, meaning good lipophilicity values, low unfractionated values, and high bioavailability. Therefore, these potential anticancer compounds should be further validated by in vivo studies for their appropriate function in human health with a safety profile, and a comprehensive drug interaction study should be performed.  相似文献   

16.
Sensitivity to L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) was used to characterize the phenotype of human activated killer cells. Natural killer cells (NK) and the precursors of both the alloantigen-specific cytotoxic T lymphocytes (CTL) and the NK-like activated killer cells generated after stimulation with allogeneic cells were deleted from human peripheral blood lymphocytes by preincubation with Leu-Leu-OMe. It was noted, however, that cytotoxic lymphocytes could be generated from Leu-Leu-OMe-treated lymphocyte precursors after 2 to 6 days of culture with the nonspecific mitogen, phytohemagglutinin (PHA). The characteristics of these killer cells indicated that they were a unique population that could be distinguished from other cytotoxic cells. Killing by these cells exhibited slow kinetics in that 18 hr cytotoxicity assays were required to detect full cytotoxic potential. When 18 hr assays were used, PHA-stimulated cytotoxic cells generated from Leu-Leu-OMe-treated lymphocytes were able to kill both NK-sensitive K562 cells and the relatively NK-resistant renal cell carcinoma cell line, Cur. These cytotoxic lymphocytes were HNK-1, Leu-11b (CD16), and OKM1 (CR3)-negative at both the precursor and effector stage of activation. Furthermore, these cells were derived from a CD3-positive precursor. Finally, killing by activated effectors was inhibited by OKT3. Unlike activation of Leu-Leu-OMe-sensitive large granular lymphocytes, generation of these cytotoxic T cells was totally prevented by treatment with mitomycin c before stimulation. Thus, a unique class of tumoricidal T cells can be characterized by resistance of lymphocyte precursors to a concentration of Leu-Leu-OMe, which has been shown to ablate NK, mixed lymphocyte culture-activated NK-like cytotoxic precursors, and the precursors of alloantigen-specific CTL.  相似文献   

17.
18.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   

19.
Deoxynucleoside analogues (dNAs) are cytotoxic towards both replicating and indolent malignancies. The impact of fluctuations in the metabolism of dNAs in relation to cell cycle could have strong implications regarding the activity of dNAs. Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) are important enzymes for phosphorylation/activation of dNAs. These drugs can be dephosphorylated/deactivated by 5'-nucleotidases (5'-NTs) and elevated activities of 5'-NTs and decreased dCK and/or dGK activities represent resistance mechanisms towards dNAs. The activities of dCK, dGK, and three 5'-NTs were investigated in four human leukemic cell lines in relationship to cell cycle progression and cytotoxicity of dNAs. Synchronization of cell cultures to arrest in G0/G1 by serum-deprivation was performed followed by serum-supplementation for cell cycle progression. The activities of dCK and dGK increased up to 3-fold in CEM, HL60, and MOLT-4 cells as they started to proliferate, while the activity of cytosolic nucleotidase I was reduced in proliferating cells. CEM, HL60, and MOLT-4 cells were also more sensitive to cladribine, cytarabine, 9-beta-D-arabinofuranosylguanine and clofarabine than K562 cells which demonstrated lower levels and less alteration of these enzymes and were least susceptible to the cytotoxic effects of most dNAs. The results suggest that, in the cell lines studied, the proliferation process is associated with a general shift in the direction of activation of dNAs by inducing activities of dCK/dGK and reducing the activity of cN-I which is favourable for the cytotoxic effects of cladribine, cytarabine and, 9-beta-D-arabinofuranosylguanine. These results emphasize the importance of cellular proliferation and dNA metabolism by both phosphorylation and dephosphorylation for susceptibility to dNAs. It underscores the need to understand the mechanisms of action and resistance to dNAs in order to increase efficacy of dNAs treatment by new rational.  相似文献   

20.
In order to determine suitable experimental conditions for estimating the accurate spontaneous frequency of sister chromatid exchanges (SCEs) in vivo in somatic cells of Drosophila melanogaster, the effects of bromodeoxyuridine (BUdR) on metamorphosis as well as on cell cycle kinetics were examined. The rate of growth of third-instar larvae, fed on BUdR-containing synthetic medium, markedly delayed with increasing concentrations of BUdR, but this toxic effect of BUdR was not observed below 150 μg/ml.Furthermore, the rate of eclosion drastically decreased by the incorporation of BUdR: it was reduced to about one-half of that in the control when the larvae were exposed to 100 (μg/ml. On the other hand, little difference in the rate of pupation was found within the range of 0–800 μg/ml BUdR. These results indicate that the developmental stage from pupa to adult is the most sensitive phase to BUdR.To test the effect of BUdR on cell cycle, metaphase cells were classified as having undergone each replication cycle in the presence of different BUdR concentrations according to the pattern of differential staining of sister chromatids, and the proportion of each replication cycle cells examined. No inhibition of cellular kinetics was observed at BUdR concentrations below 200 μg/ml.On the basis of these results, 100 μg/ml was chosen as suitable BUdR concentration for the analysis of cell cycle kinetics and according to the distribution of replication cycle metaphase cells as a function of time after the initiation of BUdR treatment, the cell cycle duration of the third-instar larval ganglion cells was roughly estimated to be about 7–8 h, at least under our experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号