首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of somatostatin and its mechanism of action in the retina remains an important target for investigation. Biochemical and pharmacological studies were engaged to characterize the somatostatin receptors in the rabbit retina, and their coupling to G-proteins. The ability of selective ligands to inhibit [125I]Tyr11-somatostatin-14 binding to rabbit retinal membranes was examined. The sst2 analogues SMS201-995, MK678, and BIM23014, displayed IC50 values of 0.28 +/- 0.12, 0.04 +/- 0.01 and 1.57 +/- 0.39 nm, respectively. The sst1 analogue CH275 moderately displaced the [125I]Tyr11-somatostatin-14 binding, while selective analogues for sst3, sst4 and sst5 had minimal effect. Immunoblotting and/or immunohistochemistry studies revealed the presence of the pertussis toxin sensitive Gi1/2, and Go proteins, as well as Gs. Somatostatin-14 and MK678 stimulated GTPase activity in a concentration-dependent manner with EC50 values of 42.8 +/- 16.8 and 70.0 +/- 16.5 nm, respectively, thus supporting the functional coupling between the receptor and the G-proteins. CH275 stimulated the GTPase activity moderately, in agreement with its binding profile. The antisera raised against Goalpha and Gi1/2alpha inhibited the somatostatin-induced high-affinity GTPase activity, but only anti-Goalpha inhibited the MK678 stimulation of the enzyme. These results suggest that somatostatin mediates its actions in the rabbit retina by interacting mainly with sst2 receptors that couple to Goalpha.  相似文献   

2.
BIM 23014 is a somatostatin analog displaying an increased biological half life due to resistance to enzymatic degradation. This peptide inhibits GH release directly at the level of pituitary somatotrophs. In addition, an action of BIM 23014 at the level of the hypothalamus is possible since somatostatinergic fibers and receptors have been identified on GH-RH neurons. To evaluate the effect of BIM 23014 on GH-RH secretion, hypophysial portal blood (HPB) was continuously collected in conscious sheep. Twelve rams (40-45 kg, 9-month-old) with chronically implanted perihypophysial cannulae were i.v. injected with BIM 23014 (1 mg) or saline. HPB and jugular blood were collected for 3-5 hours before and after the injection for the determinations of GH-RH and GH concentrations respectively. The acute injection of BIM 23014 induced a rapid decrease of plasma GH within the first two hours. Simultaneously, GH-RH in HPB decreased significantly. After reaching a nadir, GH concentrations increased to values greater than baseline. A similar rebound in GH-RH levels in HPB was also observed. These data indicate that BIM 23014 acts at the level of GH-RH hypothalamic neurons, in addition to its well-know effect on the pituitary gland.  相似文献   

3.
We have examined the effect of somatostatin and its octapeptide analogue BIM 23014c on concanavalin A-induced lymphocyte proliferation and target-specific natural killer activity both in vitro and in vivo. Using Peyer's patches and spleen as a source of lymphocytes, we found that both peptides modulated immunity in a dose-dependent manner. Comparatively, there was no significant difference between the activity of somatostatin or BIM 23014c in the modulation of immunity. Proliferation, both in vitro and in vivo, was significantly inhibited by both peptides in each organ with a higher specificity towards the Peyer's patch lymphocytes. Natural killer activity was also inhibited in both organs in vivo and in vitro. Thus, not only did somatostatin and BIM 23014c have similar effects on proliferation and natural killer activity, but their effect was organ specific. Preliminary data suggest that BIM 23014c works via the same receptor as somatostatin, therefore intimating that these two peptides are both clinically and immunologically similar.  相似文献   

4.
Several recent studies suggest that G protein-coupled receptors can assemble as heterodimers or hetero-oligomers with enhanced functional activity. However, inactivation of a fully functional receptor by heterodimerization has not been documented. Here we show that the somatostatin receptor (sst) subtypes sst(2A) and sst(3) exist as homodimers at the plasma membrane when expressed in human embryonic kidney 293 cells. Moreover, in coimmunoprecipitation studies using differentially epitope-tagged receptors, we provide direct evidence for heterodimerization of sst(2A) and sst(3). The sst(2A)-sst(3) heterodimer exhibited high affinity binding to somatostatin-14 and the sst(2)-selective ligand L-779,976 but not to the sst(3)-selective ligand L-796,778. Like the sst(2A) homodimer, the sst(2A)-sst(3) heterodimer stimulated guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding, inhibition of adenylyl cyclase, and activation of extracellular signal-regulated kinases after exposure to the sst(2)-selective ligand L-779,976. However, unlike the sst(3) homodimer, the sst(2A)-sst(3) heterodimer did not promote GTPgammaS binding, adenylyl cyclase inhibition, or extracellular signal-regulated kinase activation in the presence of the sst(3)-selective ligand L-796,778. Interestingly, during prolonged somatostatin-14 exposure, the sst(2A)-sst(3) heterodimer desensitized at a slower rate than the sst(2A) and sst(3) homodimers. Both sst(2A) and sst(3) homodimers underwent agonist-induced endocytosis in the presence of somatostatin-14. In contrast, the sst(2A)-sst(3) heterodimer separated at the plasma membrane, and only sst(2A) but not sst(3) underwent agonist-induced endocytosis after exposure to somatostatin-14. Together, heterodimerization of sst(2A) and sst(3) results in a new receptor with a pharmacological and functional profile resembling that of the sst(2A) receptor, however with a greater resistance to agonist-induced desensitization. Thus, inactivation of sst(3) receptor function by heterodimerization with sst(2A) or possibly other G protein-coupled receptors may explain some of the difficulties in detecting sst(3)-specific binding and signaling in mammalian tissues.  相似文献   

5.
The factors responsible for in vivo eosinophil recruitment are poorly defined, although T-lymphocytes appear to be involved in the etiology of eosinophilia. In order to clarify this relationship, we studied the modulation of eosinophil mobilization in the rat after immune challenge, by chronic treatment with the PAF-antagonist, BN 52021, the somatostatin analog, BIM 23014 and with Cyclosporin A (CsA). In rats made hypereosinophilic by pretreatment with cyclophosphamide or sephadex, a significant increase of the eosinophil count in blood and peritoneal fluid was induced by anaphylactic reaction. CsA totally abolished both hypereosinophilia and peritoneal eosinophil infiltration. BIM 23014 also, significantly reduced the circulating eosinophils (-68%, p less than 0.001) and cell infiltration (-86%, p less than 0.05). In contrast, BN 52021 decreased peritoneal eosinophil recruitment, while having relatively little effect on circulating cells. CsA and somatostatin are known to affect T-cell proliferation, and as T-cells are involved in the differentiation of hematopoietic cells into eosinophils, these drugs could decrease eosinophil availability for recruitment. In contrast, the PAF antagonist may act by inhibiting PAF-induced eosinophil chemotaxis, providing a more specific inhibition of this process than that exerted by CsA, BIM 23014 and other immunosuppressive agents.  相似文献   

6.
The G protein-coupled sst2 somatostatin receptor acts as a negative cell growth regulator. Sst2 transmits antimitogenic signaling by recruiting and activating the tyrosine phosphatase SHP-1. We now identified Src and SHP-2 as sst2-associated molecules and demonstrated their role in sst2 signaling. Surface plasmon resonance and mutation analyses revealed that SHP-2 directly associated with phosphorylated tyrosine 228 and 312, which are located in sst2 ITIMs (immunoreceptor tyrosine-based inhibitory motifs). This interaction was required for somatostatin-induced SHP-1 recruitment and activation and consequent inhibition of cell proliferation. Src interacted with sst2 and somatostatin promoted a transient Gbetagamma-dependent Src activation concomitant with sst2 tyrosine hyperphosphorylation and SHP-2 activation. These steps were abrogated with catalytically inactive Src. Both catalytically inactive Src and SHP-2 mutants abolished somatostatin-induced SHP-1 activation and cell growth inhibition. Sst2-Src-SHP-2 complex formation was dynamic. Somatostatin further induced sst2 tyrosine dephosphorylation and complex dissociation accompanied by Src and SHP-2 inhibition. These steps were defective in cells expressing a catalytically inactive Src mutant. All these data suggest that Src acts upstream of SHP-2 in sst2 signaling and provide evidence for a functional role for Src and SHP-2 downstream of an inhibitory G protein-coupled receptor.  相似文献   

7.
Gao S  Oh YB  Shah A  Park WH  Kim SH 《Peptides》2011,32(6):1179-1186
Somatostatin is a cyclic-14 amino acid peptide which mainly distributed in digestive system and brain. Somatostatin receptor (SSTR) is a G-protein coupled receptor and all five SSTR subtypes are expressed in cardiomyocytes. The aim of this study was to investigate the effect of somatostatin on atrial natriuretic peptide (ANP) secretion and its signaling pathway. Somatostatin (0.01 and 0.1 nM) decreased ANP secretion in isolated beating rat atrium in a dose-dependent manner. But atrial contractility and translocation of extracellular fluid were not changed. Somatostatin-induced decrease in ANP secretion was significantly attenuated by the pretreatment with CYN 154806 (SSTR type 2 antagonist; 0.1 μM), but not by BIM 23056 (SSTR type 5 antagonist; 0.1 μM) and urantide (urotensin II receptor antagonist; 0.1 μM). When pretreated with an agonist for SSTR type 2 (Seglitide, 0.1 nM) and SSTR type 5 (L 817818, 0.1 nM), only Seglitide reduced ANP secretion similar to that of somatostatin. The suppressive effect of somatostatin on ANP secretion was attenuated by the pretreatment with an inhibitor for adenylyl cyclase (MDL-12330A, 5 μM) or protein kinase A (KT 5720, 0.1 μM). In diabetic rat atria, the suppressive effect of somatostatin on ANP secretion and concentration was attenuated. Real time-PCR and western blot shows the decreased level of SSTR type 2 mRNA and protein in diabetic rat atria. These data suggest that somatostatin decreased ANP secretion through SSTR type 2 and an attenuation of suppressive effect of somatostatin on ANP secretion in diabetic rat atria is due to a down-regulation of SSTR type 2.  相似文献   

8.
9.
10.
The G protein-coupled sst2 somatostatin receptor is a critical negative regulator of cell proliferation. sstII prevents growth factor-induced cell proliferation through activation of the tyrosine phosphatase SHP-1 leading to induction of the cyclin-dependent kinase inhibitor p27Kip1. Here, we investigate the signaling molecules linking sst2 to p27Kip1. In Chinese hamster ovary-DG-44 cells stably expressing sst2 (CHO/sst2), the somatostatin analogue RC-160 transiently stimulates ERK2 activity and potentiates insulin-stimulated ERK2 activity. RC-160 also stimulates ERK2 activity in pancreatic acini isolated from normal mice, which endogenously express sst2, but has no effect in pancreatic acini derived from sst2 knock-out mice. RC-160-induced p27Kip1 up-regulation and inhibition of insulin-dependent cell proliferation are both prevented by pretreatment of CHO/sst2 cells with the MEK1/2 inhibitor PD98059. In addition, using dominant negative mutants, we show that sst2-mediated ERK2 stimulation is dependent on the pertussis toxin-sensitive Gi/o protein, the tyrosine kinase Src, both small G proteins Ras and Rap1, and the MEK kinase B-Raf but is independent of Raf-1. Phosphatidylinositol 3-kinase (PI3K) and both tyrosine phosphatases, SHP-1 and SHP-2, are required upstream of Ras and Rap1. Taken together, our results identify a novel mechanism whereby a Gi/o protein-coupled receptor inhibits cell proliferation by stimulating ERK signaling via a SHP-1-SHP-2-PI3K/Ras-Rap1/B-Raf/MEK pathway.  相似文献   

11.
Previous studies have suggested that somatostatin inhibits pancreatic secretion at a central vagal site, and the dorsal vagal complex (DVC) is involved in central feedback inhibition of the exocrine pancreas. The aim of this study was to investigate the effect of exogenous somatostatin in the DVC on pancreatic secretion and the somatostatin receptor subtype(s) responsible for the effect. The effects of somatostatin microinjected into the DVC on pancreatic secretion stimulated by cholecystokinin octapeptide (CCK-8) or 2-deoxy-d-glucose (2-DG) were examined in anesthetized rats. To investigate the somatostatin inhibitory action site, a somatostatin receptor antagonist [SRA; cyclo(7-aminoheptanoyl-Phe-d-Trp-Lys-Thr)] was microinjected into the DVC before intravenous infusion of somatostatin and CCK-8/2-DG. The effects of injection of a somatostatin receptor-2 agonist (seglitide) and combined injection of somatostatin and a somatostatin receptor-2 antagonist (CYN 154806) in the DVC on the pancreatic secretion were also investigated. Somatostatin injected into the DVC significantly inhibited pancreatic secretion evoked by CCK-8 or 2-DG in a dose-dependent manner. SRA injected into the DVC completely reversed the inhibitory effect of intravenous administration of somatostatin. Seglitide injected into the DVC also inhibited CCK-8/2-DG-induced pancreatic protein secretion. However, combined injection of somatostatin and CYN 154806 did not affect the CCK-8/2-DG-induced pancreatic secretion. Somatostatin in the DVC inhibits pancreatic secretion via somatostatin receptor-2, and the DVC is the action site of somatostatin for its inhibitory effect.  相似文献   

12.
Localization of mRNAs for four membrane-bound guanylyl cyclases (membrane GCs; OlGC3, OlGC4, OlGC5, and OlGC-R2), three soluble guanylyl cyclase subunits (soluble GC; OlGCS-alpha(1), OlGCS-alpha(2), and OlGCS-beta(1)), neuronal nitric oxide synthase (nNOS), and cGMP-dependent protein kinase I (cGK I) was examined in the embryonic and adult retinas of the medaka fish Oryzias latipes by in situ hybridization. All of the membrane GC mRNAs were detected in the photoreceptor cells of the adult and embryonic retinas, but in different parts; the OlGC3 and OlGC5 mRNAs were expressed in the proximal part and the OlGC4 and OlGC-R2 mRNAs were expressed in the outer nuclear layer. The mRNA for nNOS was expressed in a scattered fashion on the inner side of the inner nuclear layer in the adult and embryonic retinas. The mRNAs (OlGCS-alpha(2) and OlGCS- beta(1)) of two soluble GC subunits (alpha(2) and beta(1)) were expressed mainly in the inner nuclear layer and the ganglion cell layer of the embryonic retina while the mRNAs of the soluble GC alpha(1) subunit and cGK I were not detected in either the adult or embryonic retina. These results suggest that NO itself and/or the cGMP generated by soluble GC (alpha(2)/beta(1) heterodimer) play a novel role in the neuronal signaling and neuronal development in the medaka fish embryonic retina in addition to the role played by phototransduction through membrane GCs in the adult and embryonic retinas.  相似文献   

13.
A phosphoryl protein tyrosine phosphatase (PTPase) activity has been characterized in rat pancreatic acinar membranes using 32P-labeled poly(Glu,Tyr) as substrate. Acinar membranes exhibited a high affinity for the substrate, with an apparent Km of 0.46 microM and an apparent Vmax of 0.9 nmol.mg protein-1.min-1. Acinar membrane PTPase activity displayed specific characteristics of other PTPases; it was inhibited by the inhibitors Zn2+, orthovanadate and by the divalent cations Mn2+ and Mg2+, and was stimulated by the reducing-agent dithiothreitol. It was also inhibited by soybean trypsin inhibitor and stimulated by trypsin. Gel permeation of pancreatic acinar membranes gave a single peak of enzyme activity with an apparent molecular mass of 70 000 Da. Further purification by HPLC on DEAE revealed two peaks of PTPase activity at 120 mM and 180 mM NaCl. These two peaks reacted in a Western-blot procedure with anti-(peptide) serum directed towards conserved domain of PTPase as a common 67-kDa form associated with lower-molecular-mass proteolytic fragments (31-56 kDa). Incubation of pancreatic acini with somatostatin analogues, SMS 201-995 or BIM 23014, resulted in a stimulation of membrane PTPase activity. The stimulation was rapid and transient, with a maximal level reached within 15 min of addition. The two analogs stimulated PTPase activity in a dose-dependent manner with half-maximal activation occurring at 7 pM and 37 pM and maximal activation at 0.1 nM and 0.1-1 nM for SMS 201-995 and BIM 23014, respectively. The stimulated-membrane PTPase activity also eluted at an apparent molecular mass of 70 kDa in gel-permeation chromatography. The two analogs inhibited the binding of [125I-Tyr3]SMS 201-995 to pancreatic acinar membranes with similar relative potencies to that observed on stimulation of PTPase activity. We conclude that pancreatic acinar membranes possess a low-molecular-mass PTPase which is stimulated by somatostatin analogs at concentrations involving activation of membrane somatostatin receptors.  相似文献   

14.
Wu XH  Deng QQ  Jiang SX  Yang XL  Zhong YM 《Peptides》2012,33(2):291-297
Somatostatin (SRIF), as a neuroactive peptide in the CNS, may act as a neuromodulator through activation of five specific receptor subtypes (sst(1)-sst(5)). In this work we conducted a comparative study of the expression of sst(5) in mouse and bullfrog retinas by immunofluorescence double labeling. Basically, the expression profiles of sst(5) in the retinas of the two species were similar. That is, in the inner retina sst(5) was localized to dopaminergic and cholinergic amacrine cells, stained by tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) respectively, and cells in the ganglion cell layer, whereas in the outer retina immunostaining for sst(5) was observed in horizontal cells. However, a more widespread, abundant distribution of labeling for sst(5), as compared to mouse retina, was seen in bullfrog retina: strong labeling for sst(5) was diffusely distributed in both outer and inner plexiform layers (OPL and IPL) in the bullfrog retina, but the labeling was only observed in the IPL of the mouse retina. In addition, bullfrog photoreceptors, both rods and cones, but not mouse ones, were labeled by sst(5). In combination with the experiments showing that SRIF-immunoreactivity was mainly found in the inner retina, our results suggest that SRIF, released from SRIF-containing cells in the inner retina, may play a neuromodulatory role in both outer and inner retina mediated by volume transmission via sst(5) in bullfrog retina, while the SRIF action may be largely restricted to the mouse inner retina.  相似文献   

15.
Activation of the somatostatin receptor sst2 inhibits cell proliferation by a mechanism involving the stimulation of the protein-tyrosine phosphatase SHP-1. The cell cycle regulatory events leading to sst2-mediated growth arrest are not known. Here, we report that treatment of Chinese hamster ovary cells expressing sst2 with the somatostatin analogue, RC-160, led to G1 cell cycle arrest and inhibition of insulin-induced S-phase entry through induction of the cyclin-dependent kinase inhibitor p27(Kip1). Consequently, a decrease of p27(Kip1)-cdk2 association, an inhibition of insulin-induced cyclin E-cdk2 kinase activity, and an accumulation of hypophosphorylated retinoblastoma gene product (Rb) were observed. However, RC-160 had no effect on the p21(Waf1/Cip1). When sst2 was coexpressed with a catalytically inactive mutant SHP-1 in Chinese hamster ovary cells, mutant SHP-1 induced entry into cell cycle and down-regulation of p27(Kip1) and prevented modulation by insulin and RC-160 of p27(Kip1) expression, p27(Kip1)-cdk2 association, cyclin E-cdk2 kinase activity, and the phosphorylation state of Rb. In mouse pancreatic acini, RC-160 reverted down-regulation of p27(Kip1) induced by a mitogen, and this effect did not occur in acini from viable motheaten (mev/mev) mice expressing a mutant SHP-1 with markedly deficient enzymes. These findings provide the first evidence that sst2 induces cell cycle arrest through the up-regulation of p27(Kip1) and demonstrate that SHP-1 is required for maintaining high inhibitory levels of p27(Kip1) and is a critical target of the insulin, and somatostatin signaling cascade, leading to the modulation of p27(Kip1).  相似文献   

16.
Atrial natriuretic peptide (ANP) as well as its receptor, NPR-A, have been identified in gastric antral mucosa, suggesting that ANP may act in a paracrine fashion to regulate gastric secretion. In the present study, we have superfused antral mucosal segments obtained from rat stomach to examine the paracrine pathways linking ANP and somatostatin secretion in this region.ANP (0.1 pM to 0.1 microM) caused a concentration-dependent increase in somatostatin secretion (EC(50), 0.3 nM). The somatostatin response to ANP was unaffected by the axonal blocker tetrodotoxin but abolished by addition of the selective NPR-A antagonist, anantin. Anantin alone inhibited somatostatin secretion by 18+/-3% (P<0.005), implying that endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion. Somatostatin (1 pM to 1 microM) caused a concentration-dependent decrease in ANP secretion (EC(50), 0.7 nM) that was abolished by addition of the somatostatin subtype 2 receptor (sst2) antagonist, PRL2903. Neutralization of ambient somatostatin with somatostatin antibody (final dilution 1:200) increased basal ANP secretion by 70+/-8% (P<001), implying that endogenous somatostatin inhibits ANP secretion. We conclude that antral ANP and somatostatin secretion are linked by paracrine feedback pathways: endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion, and endogenous somatostatin, acting via the sst2 receptor, inhibits ANP secretion.  相似文献   

17.
Gliomas differ from non-malignant glial cells in the overexpression or mutations of genes involved in cell cycle or growth regulation. One example is the overexpression of the somatostatin receptor subtype 2 (sst2), especially of the splice variant sst2A. The reasons for this overexpression are not known. However, the coding sequence and part of the promoter region is not mutated. In accordance to this, the sst2 is functionally active and is internalised upon agonist stimulation. Immunoelectronmicroscopic studies show that the activated sst2 is internalised via caveolin-positive endosomal vesicles and later accumulates in multivesicular bodies and lysosomal compartments. The activated sst2 is found to be co-localised with the inhibitory G-protein Gialpha at the plasma membrane and in early endosomal vesicles. Multiple signal transduction pathways are induced. Stimulation of sst2 lowers cAMP levels elicited by forskolin and activates the protein tyrosine phosphatase SHP-2. In contrast to other sst2-expressing cells a long term antiproliferative effect of somatostatin or sst2-selective agonists are not detected in cultivated glioma cells. However, continuous stimulation of sst2 decreases the expression of genes promoting tumour survival.  相似文献   

18.
Neoangiogenesis is a response to retinal hypoxia that is inhibited by somatostatin (SRIF) through its subtype 2 receptor (sst2). Using a mouse model of hypoxia-induced retinopathy, we investigated whether inhibition of adenylyl cyclase (AC) is involved in SRIF anti-angiogenic actions. Hypoxia increased AC responsiveness in wild type (WT) retinas and in retinas lacking sst2, but not in sst2-overexpressing retinas. Hypoxia also altered AC isoform expression with different patterns depending on sst2 expression level. The AC VII isoform mRNA and protein resulted the most affected. Indeed, in hypoxia AC VII expression was enhanced in WT retinas and it was further increased in sst2-lacking retinas, whereas in sst2 overexpressing retinas the increase of AC VII was lower than in WT retinas. These data suggest an involvement of AC/cAMP in mediating both hypoxia-evoked retinal neoangiogenesis and SRIF protective actions. The AC VII isoform is a candidate to a main role in these mechanisms.  相似文献   

19.
Abstract: Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving β-and α1-adrenergic receptors. The effects of N -monomethyl- l -arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited β-adrenergic stimulation of cGMP formation as well as α1-adrenergic potentiation of β-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of l -arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.  相似文献   

20.
The present study investigated the presence of somatostatin receptor subtypes (ssts) and the endogenous peptides somatostatin and cortistatin in rat Kupffer cells, since modulation of these cells by somatostatin may be important for the beneficial effect of somatostatin analogues in a selected group of hepatocellular carcinoma patients. Kupffer cells were isolated from rat liver in agreement with national and EU guidelines. RT-PCR was employed to assess the expression of somatostatin, cortistatin and ssts in Kupffer cells. Western blot analysis and immunocytochemistry were employed to assess the expression and the localization of the receptors, respectively. Quiescent Kupffer cells were found to express sst(1-4) mRNA, while immunocytochemical studies supported the presence of only the sst(3) and sst(4) receptors, which were found to be internalized. However, sst1 and sst(2A) receptors were detected by western blotting. RT-PCR and RIA measurements support the presence of both somatostatin and cortistatin. Stimulation of the cells with LPS activated the expression of the sst(2), sst(3) and sst(4) receptors. The present data provide evidence to support the presence of ssts and the endogenous neuropeptides somatostatin and CST in rat Kupffer cells. Both peptides may act in an autocrine manner to regulate sst receptor distribution. Studies are in progress in order to further characterize the role of ssts in Kupffer cells and in hepatic therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号