首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of oxygenic and anoxygenic photosynthesis, chemoautotrophic and heterotrophic bacterial production and protozoan bacterivory were measured in the pelagic zone of the stratified brackish-water lake with the purpose to determine the vertical distribution of these processes and to estimate their significance in the functioning of planktonic community of the lake. In midsummer, total daily primary productivity was about 1.3 g C m–2, of which 72% was produced by the phytoplankton, 24% by the chemoautotrophic bacteria, and only 4% by the phototrophic sulphur bacteria. Thus anoxygenic photosynthesis is a negligible source of organic matter in the lake. The production of heterotrophic bacteria averaged 1.5 g C m–2 d–1 and exceeded the total photosynthesis of phytoplankton and photosynthetic bacteria by a factor of 1.5. The estimated total primary production was too low to sustain the bacterial production. Probably the carbon cycle in the lake is dependent on the input of allochthonous organic matter. As a rule, the maximal rates of primary production and heterotrophic bacterial production were found in the chemocline or at the upper boundary of the chemocline. Heterotrophic flagellates dominated among the protozoan populations and were the major consumers of the bacterioplankton production in the lake. They showed maximal ingestion rates from 2.3 to 2.9 mg C m–3 h–1 at the upper boundary of the chemocline, where they consumed from 50 to 54% of the production of heterotrophic bacteria. Data obtained indicate that in Lake Shira the oxic-anoxic interface is the site of the most intensive production and mineralization of organic matter.  相似文献   

2.
The year-to-year variations of vertical distribution and biomass of anoxic phototrophic bacteria were studied during ice periods 2003–2005 and 2007–2008 in meromictic lakes Shira and Shunet (Southern Siberia, Russian Federation). The bacterial layers in chemocline of both lakes were sampled with a thin-layer hydraulic multi-syringe sampler. In winter, biomass of purple sulphur bacteria varied considerably depending on the amount of light penetrating into the chemocline through the ice and snow cover. In relatively weakly stratified, brackish Shira Lake, the depth of chemocline varied between winters, so that light intensity for purple sulphur bacteria inhabiting this zone differed. In Shira Lake, increased transparency of mixolimnion in winter, high chemocline position and absence of snow resulted in light intensity and biomass of purple sulphur bacteria exceeding the summer values in the chemocline of the lake. We could monitor snow cover at the lake surface using remote sensing and therefore estimate dynamics and amount of light under ice and its availability for phototrophic organisms. In Shunet Lake, the light intensities in the chemocline and biomasses of purple sulphur bacteria were always lower in winter than in summer, but the biomasses of green sulphur bacteria were similar.  相似文献   

3.
In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters.  相似文献   

4.
The occurrence and the dynamics of phototrophic purple nonsulphur bacteria (PPNSB) as well as Azospirillum, Azotobacter, Clostridium, and cyanobacteria at different rice growth stages were studied in two ricefields, at Kafr-El-Shiekh and Al-Fayoum in Egypt.The PPNSB existed in the both rice fields examined, but their numbers varied according to field conditions, habitat and rice growth stage. After transplanting, the number of PPNSB increased gradually, reached its maximum at maximum tillering stage, and thereafter declined toward harvest time. Numbers of PPNSB were generally comparable with that of the heterotrophic N2-fixers namely Azospirillum, Azotobacter, Clostridium and cyanobacteria, while that of phototrophic purple and green sulphur bacteria were relatively lower.The highest PPNSB numbers were generally found in rhizosphere (103–106 per g–1 dw soil) followed by soil (103–105 per g–1 dw soil) and floodwater (10–102 per ml). Rice plants showed a positive rhizosphere effect on PPNSB, clostridia, Azotobacter and Azospirillum, negative rhizosphere effect on cyanobacteria and green sulphur bacteria, and no effect on purple sulphur bacteria.  相似文献   

5.
The number of metabolically active bacteria was measured with nalidixic acid over two annual cycles at three depths in the epilimnion of hypertrophic Hartbeespoort Dam, South Africa. Concurrent measurements were made of water temperature, DOC, phytoplankton production of dissolved (EDOC) and particulate organic carbon, chlorophyll a and the uptake of glucose (Vmax). The objective was to determine the dominant factors correlated to the number of metabolically active bacteria and the relationship between active bacterial numbers and heterotrophic activity.The number of active bacteria was usually highest at the surface and ranged between 0.70 and 6.82 x 106 cells ml–1. The dominant factors correlated to the number of bacteria at the surface were water temperature (r = 0.65, n = 54, p<0.001), primary production (r = 0.53, n = 51, p<0.001) and EDOC (r = 0.37, n = 45, p = 0.005). Surface Vmax for glucose ranged between 0.11 and 4.0 µgC 1–1 h–1 and was positively correlated to the number of active bacteria (r = 0.61, n = 53, p<0.001). The specific activity index (10–12 µgC cell–1 h–1) varied between 80 and 2290 at the surface and was most strongly correlated to EDOC (r = 0.70, n = 48, p<0.001). Relationships between active bacterial numbers, water temperature, phytoplankton activity and glucose uptake were also found at two additional depths within the epilimnion. These data suggest that bacterial populations in nutrient enriched lakes contain a large number of metabolically active cells with high individual activity as a result of enhanced phytoplankton growth.  相似文献   

6.
A feature of meromictic lakes is that several physicochemical and biological gradients affect the vertical distribution of different organisms. The vertical stratification of physical, chemical and biological components in saline, fishless meromictic lakes Shira and Shunet (Siberia, Russia) is quite different mainly because both mean depth and maximum depth of lakes differ as well as their salinity levels differ. The chemocline of the Lake Shira, as in many meromictic lakes, is inhabited by bacterial community consisting of purple sulphur and heterotrophic bacteria. As the depth of the chemocline is variable, the bacterial community does not attain high densities. The mixolimnion in Lake Shira, which is thermally stratified in summer, also creates different habitat for various species. The distribution of phytoplankton is non-uniform with its biomass peak in the metalimnion. The distribution of zooplankton is also heterogeneous with rotifers and juvenile copepods inhabiting the warmer epilimnion and older copepods found in the cold but oxic hypolimnion. The amphipod Gammarus lacustris which can be assigned to the higher trophic link in the fishless lake’s ecosystem, such as Lake Shira, is also distributed non-uniformly, with its peak density generally observed in the thermocline region. The chemocline in Lake Shunet is located at the depth of 5 m, and unlike in Lake Shira, due to a sharp salinity gradient between the mixolimnion and monimolimnion, this depth is very stable. The mixolimnion in Lake Shunet is relatively shallow and the chemocline is inhabited by (1) an extremely dense bacterial community; (2) a population of Cryptomonas sp.; and (3) ciliate community comprising several species. As the mixolimnion of Lake Shunet is not thermally stratified for long period, the phytoplankton and zooplankton populations are not vertically stratified. The gammarids, however, tend to concentrate in a narrow layer located 1–2 m above the chemocline. We believe that in addition to vertical inhomogeneities of both physicochemical parameters, biological and physical factors also play a role in maintaining these inhomogeneities. We conclude that the stratified distributions of the major food web components will have several implications for ecosystem structure and dynamics. Trophic interactions as well as mass and energy flows can be significantly impacted by such heterogeneous distributions. Species spatially separated even by relatively short distances, say a few centimetres will not directly compete. Importantly, we demonstrate that not only bacteria, phytoflagellates and ciliate tend to concentrate in thin layers but also larger-sized species such Gammarus (amphipods) can also under certain environmental conditions have stratified distribution with maxima in relatively thin layer. As the vertical structure of the lake ecosystem is rather complex in such stratified lakes as ours, the strategy of research, including sampling techniques, should consider potentially variable and non-homogeneous distributions.  相似文献   

7.
Biomass and production of plankton communities were investigated in two Chinese integrated fish culture ponds in August, Dianshanhu Pond (with high density of planktivorous carp) and Pingwang Pond (with low density of planktivorous carp). The plankton communities were composed of rotifers, protozoans, phytoplankton (<40 µm) and bacteria. The large phytoplankton (>40 µm), cladocerans and copepods were rare because of grazing pressure by the carp. The density or biomass of bacteria (1.93 × 107 and 2.20 × 107 cells ml–1 on average in Dianshanhu and Pingwang Ponds, respectively), picophytoplankton (24.6 and 18.5 mg m–3 Chla on average) and rotifers (5372 and 20733 ind. 1–1 on average) exceeded the maximum values reported for natural waters.The average [3H]thymidine uptake rates were 694 and 904 pmoles 1–1 h–1 (13.4 and 20.6 µgC 1–1) and the bacterial production by the >2 µm fraction amounted 21–28% of total [3H] thymidine uptake rate in both ponds. The mean chlorophylla concentrations were 59.1 and 183 mg m–3 in Dianshanhu and Pingwang Ponds, respectively. 82.4% and 65.3% of the total Chla was contributed by the <10 µm nano- and picophytoplankton in each pond, respectively. In particular, the picophytoplankton contribution amounted 41.2% of thtal Chla in Dianshanhu Pond. Primary production was 2.5 and 3.4 gC m–2 d–1 in each pond, respectively, and >50% of production was contributed by picophytoplankton. The mean biomasses of protozoa were 168 µg 1–1 and 445 µg 1–1 and those of rotifers were 763 µg 1–1 and 1186 µg 1–1 in Dianshanhu and Pingwang Ponds, respectively. The ecological efficiencies expressed in terms of the ratios of primary production to zooplankton production were 0.22 and 0.31, for the two ponds.  相似文献   

8.
The phytoplankton dynamics of a Chinese integrated fish culture pond in the suburbs of Shanghai were studied in September and October 1989. The chlorophyll a concentration was high with a range of 62.5–127.3 µg l–1; however, daily net production of phytoplankton was relatively low, with a range of 0.53–1.94 gC m –2 d–1. Of the total phytoplankton biomass, 70–87% was composed of nanoplankton (<10 µm) and picoplankton, probably because of the selective feeding by phytoplanktivorous carp. In particular, the chlorophyll a concentration of picoplankton was 2.1 – 14.1 mg m –3, and its contribution to total phytoplankton production rate was high (18–68%).  相似文献   

9.
The distribution of primary components of the microbial community (autotrophic pico- and nanoplankton, phototrophic bacteria, heterotrophic bacteria, microscopic fungi, heterotrophic flagellates, ciliates and heliozoa) in the water column of Lake Shira, a steppe brackish-water, stratified lake in Khakasia, Siberia (Russia), were assessed in midsummer. Bacterioplankton was the main component of the planktonic microbial community, accounting for 65.3 to 75.7% of the total microbial biomass. The maximum concentration of heterotrophic bacteria were recorded in the monimolimnion of the lake. Autotrophic microorganisms contributed more significantly to the total microbial biomass in the pelagic zone (20.2–26.5%) than in the littoral zone of the lake (8.7–14.9%). First of all, it is caused by development of phototrophic sulphur bacteria at the oxic-anoxic boundary. The concentrations of most aerobic phototrophic and heterotrophic microorganisms were maximal in the upper mixolimnion. Heterotrophic flagellates dominated the protozoan populations. Ciliates were minor component of the planktonic microbial community of the lake. Heterotrophic flagellates were the most diverse group of planktonic eucaryotes in the lake, which represented by 36 species. Facultative and obligate anaerobic flagellates were revealed in the monimolimnion. There were four species of Heliozoa and only three of ciliates in the lake.  相似文献   

10.
Carbon standing stocks and fluxes were studied in the lagoon of Tikehau atoll (Tuamotu archipelago, French Polynesia), from 1983 to 1988.The average POC concentration (0.7–2000 µm) was 203 mg C m–3. The suspended living carbon (31.6 mg C m–3) was made up of bacteria (53%), phytoplankton < 5 µm (14.2%), phytoplankton > 5 µm (14.2%), nanozooplankton 5–35 µm (5.7%), microzooplankton 35–200 µm (4.7%) and mesozooplankton 200–2000 µm (7.9%). The microphytobenthos biomass was 480 mg C m–2.Suspended detritus (84.4% of the total POC) did not originate from the reef flat but from lagoonal primary productions. Their sedimentation exceeded phytobenthos production.It was estimated that 50% of bacterial biomass was adsorbed on particles. the bacterial biomass dominance was explained by the utilisation of 1) DOC excreted by phytoplankton (44–175 mg C m–2 day –1) and zooplankton (50 mg Cm–2 day–1)2) organic compounds produced by solar-induced photochemical reactions 3) coral mucus.50% of the phytoplankton biomass belongs to the < 5 µm fraction. This production (440 mg C m–2 day–1) exceeded phytobenthos production (250 mg C m–2 day–1) when the whole lagoon was considered.The zooplankton > 35 µm ingested 315 mg C m–2 day–1, made up of phytoplankton, nanozooplankton and detritus. Its production was 132 mg C m–2 day–1.  相似文献   

11.
Vertical distribution of bacteria in Lake Vanda, an Antarctic meromictic lake, was examined by the acridine orange epifluorescence direct count method. Total bacteria were 104–105 cells · ml–1 in the water at 55 m depth and above, and increased drastically to 107 cells · ml–1 in the bottom water. Filamentous or long rodshaped bacteria occurred at a high frequency in the upper layers, but in the bottom layers most bacteria were coccoidal or short rods. Mean bacterial cell volume in water of between 10 m and 60 m deep was fairly large compared with common bacterial populations in seawater and lake water. Aerobic heterotrophic bacteria were recovered from the water of a depth of 30 m and above, and were assumed to belong to Caulobacter. Viable heterotrophic bacteria were not recovered from the high salinity deep water by media prepared with the same deep water. Phototrophic purple non-sulphur bacteria were isolated by enrichment cultures from water at 55 m depth.  相似文献   

12.
The turnover times of glucose, averaged for 0–10 m in the upper waters of Lake Kinneret and measured by the addition of single or multiple concentrations of substrate, ranged from 23 to 188 hours and 1 to 87 hours respectively. Potential uptake rates (estimated as Vmax) ranged from 0.095 to 1.94 µg glucose l–1h–1, while measured uptake rates varied from 0.09 to 1.1 µg glucose l–1h–1. Concentrations of dissolved carbohydrates and glucose averaged 0.71 mg glucose equivalents l–1 and 39 µg glucose l–1 respectively. No evident relationships between glucose cycling and any fractions of dissolved organic matter, phytoplankton biomass or primary productivity were found. Turnover times were generally most rapid immediately after the decline of the spring Peridinium bloom. The respiration percentage of incorporated glucose ranged from 25% to 61% with highest values during the summer months. Respiration may be influenced by the nature of the indigenous bacterial population as well as by temperature. Daily heterotrophic glucose carbon uptake was about 9% of the photosynthetic incorporation and could provide a bacterial yield of about 7 × 104 ml–1d–1.  相似文献   

13.
Big Soda Lake is an alkaline, saline lake with a permanent chemocline at 34.5 m and a mixolimnion that undergoes seasonal changes in temperature structure. During the period of thermal stratification, from summer through fall, the epilimnion has low concentrations of dissolved inorganic nutrients (N, Si) and CH4, and low biomass of phytoplankton (chlorophyll a ca. 1 mgm -3). Dissolved oxygen disappears near the compensation depth for algal photosynthesis (ca. 20 m). Surface water is transparent so that light is present in the anoxic hypolimnion, and a dense plate of purple sulfur photosynthetic bacteria (Ectothiorhodospira vacuolata) is present just below 20 m (Bchl a ca. 200 mgm-3). Concentrations of N H4 +, Si, and CH4 are higher in the hypolimnion than in the epilimnion. As the mixolimnion becomes isothermal in winter, oxygen is mixed down to 28 m. Nutrients (NH4 +, Si) and CH4 are released from the hypolimnion and mix to the surface, and a diatom bloom develops in the upper 20 m (chlorophyll a > 40 mgm-3). The deeper mixing of oxygen and enhanced light attenuation by phytoplankton uncouple the anoxic zone and photic zone, and the plate of photosynthetic bacteria disappears (Bchl a ca.10mgm-3). Hence, seasonal changes in temperature distribution and mixing create conditions such that the primary producer community is alternately dominated by phytoplankton and photosynthetic bacteria: the phytoplankton may be nutrient-limited during periods of stratification and the photosynthetic bacteria are light-limited during periods of mixing.  相似文献   

14.
Bacterial activity was measured in the river Seine by two methods, 3H-thymidine incorporation into DNA and 3H-leucine incorporation into proteins. Both incorporation rates are characterized by low values upstream of Paris, a large increase just downstream of the outfall of the Achères treatment plant effluents, and then decreasing values further downstream. The covariation of both activities is demonstrated by the constancy of the molar ratio (leucine to thymidine incorporation rate) in the range of 6 to 8 for all the samples, except in the perturbed area where it is higher (15 to 35). These high values of molar ratio are linked to the introduction into the river of large sized bacteria (1 µm) with higher incorporation rates per cell or biomass unit than the small autochthonous bacteria (< 1 µm). Growth rates of large bacteria were on average 3.7 times higher than those of small bacteria. Bacterial production was calculated with experimentally determined conversion factors (0.5 × 1018 cells per mole of thymidine incorporated and 900 gC per mole of leucine incorporated) and by taking into account the activity of both size classes of bacteria measured through fractionation experiments (post-incubation filtration). Production estimated in the perturbed area downstream of Ach6res was very high, up to 60 µgC liter–1h–1 in the summer. Carbon consumption by bacteria in the area perturbed by the Ach6res effluents was calculated assuming a growth yield of 0.2 and compared to the load of biodegradable organic matter discharged by the treatment plant. In summer, an additional supply of organic matter is required to account for the intense bacterial activity, suggesting the importance of phytoplankton production in the carbon budget. Offprint requests to: Pierre Servais  相似文献   

15.
Microbial food web in a large shallow lake (Lake Balaton, Hungary)   总被引:2,自引:2,他引:0  
Seasonal variations of phyto-, bacterio- and colourless flagellate plankton were followed across a year in the large shallow Lake Balaton (Hungary). Yearly average chlorophyll-a concentration was 11 µg 1–1, while the corresponding values of bacterioplankton and heterotrophic nanoflagellate (HNF) plankton biomass (fresh weight) were 0.24 mg 1–1 and 0.35 mg 1–1, respectively. About half of planktonic primary production was channelled through bacterioplankton on the yearly basis. However, there was no significant correlation between phytoplankton biomass and bacterial abundance. Bacterial specific growth rates were in the range of 0.009 and 0.09 h–1, and ended to follow the seasonal changes in water temperature. In some periods of the year, predator-prey relationships between the HNF and bacterial abundance were obvious. The estimated HNF grazing on bacteria varied between 3% and 227% of the daily bacterial production. On an annual basis, 87% of bacterial cell production was grazed by HNF plankton.  相似文献   

16.
The vertical and seasonal distributions of the phytoflagellate Cryptomonas spp., and its most common, the planktonic ciliate predators (Oligotrichida, Scuticociliatida, Hypotrichida and Prostomatida) were investigated in chemocline region of small saline, meromictic lake Shunet (Siberia, Russia) during 2003 and 2005. The lake has a pronounced chemocline, with abundance of purple and green sulphur bacteria. Vertical distribution of the Cryptomonas populations near the oxic/anoxic boundary layer was studied at close intervals in water sampled using a hydraulically operated thin-layer sampler. In both summer and winter, Cryptomonas peaked in water stratum 5–10 cm above anoxic zone or in the anoxic zone water column in the chemocline (about 5 m). Ciliate densities and biomass were also much higher in chemocline than in mixolimnion. The range of diurnal migration of Cryptomonas population was not very wide, and it was restricted to layers with high light intensity. The ciliates were sometimes detected above the upper border of the anoxic zone but also several centimetres below this zone.  相似文献   

17.
The role of photosynthetic sulphur bacteria as primary producers in monomictic Lake Vechten (The Netherlands) is described. Lake Vechten has a surface area of 4.7 ha, a maximum depth of 11.9 m and a mean depth of 6 m.Bacterial populations, appearing at the boundary layer of the oxidative and reductive zone from early June till late October, were composed of cyanobacteria, Chromatiaceae and green and brown coloured Chlorobiaceae. Predominating genera were Synechococcus, Chloronema, Chromatium and Thiopedia. The photosynthetic sulphur bacteria accounted for a primary production rate of 13.6–106.1 mg C.m–2 day–1, which corresponded to 3.9–17.5% of total daily productivity in the pelagial zone. The percentage of photosynthetic bacterial production of total annual planktonic primary production calculated for the entire pelagial zone, taking into account compensation for decreasing volume of lower strata, was 3.6% (i.e. 127 against a total production of 3 510 kg C.lake–1yr–1).  相似文献   

18.
A dense population of the phototrophic consortium “Pelochromatium roseum” was investigated in the chemocline of a temperate holomictic lake (Lake Dagow, Brandenburg, Germany). Fluorescence in situ hybridization revealed that the brown epibionts of “P. roseum” constituted up to 37% of the total bacterial cell number and up to 88% of all green sulfur bacteria present in the chemocline. Specific amplification of 16S rRNA gene fragments of green sulfur bacteria and denaturing gradient gel electrophoresis fingerprinting yielded a maximum of four different DNA bands depending on the year of study, indicating that the diversity of green sulfur bacteria was low. The 465-bp 16S rRNA gene sequence of the epibiont of “P. roseum” was obtained after sorting of individual consortia by micromanipulation, followed by a highly sensitive PCR. The sequence obtained represents a new phylotype within the radiation of green sulfur bacteria. Maximum light-dependent H14CO3 fixation in the chemocline in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea suggested that there was anaerobic autotrophic growth of the green sulfur bacteria. The metabolism of the epibionts was further studied by determining stable carbon isotope ratios (δ13C) of their specific biomarkers. Analysis of photosynthetic pigments by high-performance liquid chromatography revealed the presence of high concentrations of bacteriochlorophyll (BChl) e and smaller amounts of BChl a and d and chlorophyll a in the chemocline. Unexpectedly, isorenieratene and β-isorenieratene, carotenoids typical of other brown members of the green sulfur bacteria, were absent. Instead, four different esterifying alcohols of BChl e were isolated as biomarkers of green sulfur bacterial epibionts, and their δ13C values were determined. Farnesol, tetradecanol, hexadecanol, and hexadecenol all were significantly enriched in 13C compared to bulk dissolved and particulate organic carbon and compared to the biomarkers of purple sulfur bacteria. The difference between the δ13C values of farnesol, the major esterifying alcohol of BChl e, and CO2 was −7.1%, which provides clear evidence that the mode of growth of the green sulfur bacterial epibionts of “P. roseum” in situ is photoautotrophic.  相似文献   

19.
The interrelation of heterotrophic bacteria with bacterivorous protists has been widely studied in pelagic environments, but data on benthic habitats, especially in freshwater systems, are still scarce. We present a seasonal study focusing on bacterivory by heterotrophic nanoflagellates (HNF) and ciliates in the silty sediment of a temperate macrophyte-dominated oxbow lake. From January 2001 to February 2002 we monitored the standing stock of bacteria and protozoa, bacterial secondary production (BSP, 3H-thymidine, and 14C-leucine incorporation), and grazing rates of HNF and ciliates on bacteria (FLB uptake) in the oxic sediment of the investigated system. BSP ranged from 470 to 4050 µg C L–1 wet sediment h–1. The bacterial compartment turned out to be highly dynamic, indicated by population doubling times (0.6–10.0 d), which were comparable to those in the water column of the investigated system. Yet, the control mechanisms acting upon the bacterial population led to a relative constancy of bacterial standing stock during a year. Ingestion rates of protozoan grazers were 0–20.0 bacteria HNF–1 h–1 and 0–97.6 bacteria ciliate–1 h–1. HNF and ciliates together cropped 0–14 (mean 4)% of BSP, indicating that they did not significantly contribute to benthic bacterial mortality during any period of the year. The low impact of protozoan grazing was due to the low numbers of HNF and ciliates in relation to bacteria (1.8–3.5 × 104 bacteria HNF–1, 0.9–3.1 × 106 bacteria ciliate–1). Thus, grazing by HNF and ciliates could be ruled out as a parameter regulating bacterial standing stock or production in the sediment of the investigated system, but the factors responsible for the limitation of benthic protistan densities and the fate of benthic BSP remained unclear.  相似文献   

20.
We analyzed the variation with depth in the composition of members of the domain Bacteria in samples from alkaline, hypersaline, and currently meromictic Mono Lake in California. DNA samples were collected from the mixolimnion (2 m), the base of the oxycline (17.5 m), the upper chemocline (23 m), and the monimolimnion (35 m). Composition was assessed by sequencing randomly selected cloned fragments of 16S rRNA genes retrieved from the DNA samples. Most of the 212 sequences retrieved from the samples fell into five major lineages of the domain Bacteria: α- and γ-Proteobacteria (6 and 10%, respectively), Cytophaga-Flexibacter-Bacteroides (19%), high-G+C-content gram-positive organisms (Actinobacteria; 25%), and low-G+C-content gram-positive organisms (Bacillus and Clostridium; 19%). Twelve percent were identified as chloroplasts. The remaining 9% represented β- and δ-Proteobacteria, Verrucomicrobiales, and candidate divisions. Mixolimnion and oxycline samples had low microbial diversity, with only 9 and 12 distinct phylotypes, respectively, whereas chemocline and monimolimnion samples were more diverse, containing 27 and 25 phylotypes, respectively. The compositions of microbial assemblages from the mixolimnion and oxycline were not significantly different from each other (P = 0.314 and 0.877), but they were significantly different from those of chemocline and monimolimnion assemblages (P < 0.001), and the compositions of chemocline and monimolimnion assemblages were not significantly different from each other (P = 0.006 and 0.124). The populations of sequences retrieved from the mixolimnion and oxycline samples were dominated by sequences related to high-G+C-content gram-positive bacteria (49 and 63%, respectively) distributed in only three distinct phylotypes, while the population of sequences retrieved from the monimolimnion sample was dominated (52%) by sequences related to low-G+C-content gram-positive bacteria distributed in 12 distinct phylotypes. Twelve and 28% of the sequences retrieved from the chemocline sample were also found in the mixolimnion and monimolimnion samples, respectively. None of the sequences retrieved from the monimolimnion sample were found in the mixolimnion or oxycline samples. Elevated diversity in anoxic bottom water samples relative to oxic surface water samples suggests a greater opportunity for niche differentiation in bottom versus surface waters of this lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号