首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the transport of the Uukuniemi virus membrane glycoproteins in baby hamster kidney and chick embryo cells by using a temperature-sensitive mutant (ts12). Uukuniemi virus assembles in the Golgi complex, where both glycoproteins G1 and G2 and nucleocapsid protein N accumulate (E. Kuismanen, B. B?ng, M. Hurme, and R. F. Pettersson, J. Virol. 51:137-146, 1984). At the restrictive temperature (39 degrees C), the glycoproteins of ts12 were transported to the Golgi complex as in wild-type, virus-infected cells, whereas the nucleocapsid protein failed to accumulate there. Pulse-chase labeling followed by immunoprecipitation and treatment with endo-beta-N-acetylglucosaminidase H showed that G1 synthesized at 39 degrees C in ts12-infected cells had an altered mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting a lack of terminal glycosylation. The typical Uukuniemi virus-induced vacuolization and expansion of the Golgi complex could be seen also in ts12-infected cells at 39 degrees C, although no virus particles were formed. This suggests that the morphological changes were induced by the Uukuniemi virus glycoproteins. In wild-type virus- or ts12-infected cells, G1 and G2 could not be chased out from the Golgi complex even after 6 h of treatment with cycloheximide. The glycoproteins were thus retained in the Golgi even under conditions when no virus maturation took place and when nucleocapsids did not accumulate in the Golgi region. Accordingly, the glycoproteins of Uukuniemi virus were found to have properties resembling those of Golgi-specific proteins. This virus model system may be useful in studying the synthesis and transport of membrane proteins that are transported to and retained in the Golgi.  相似文献   

2.
The membrane glycoproteins G1 and G2 of Uukuniemi virus, a bunyavirus, accumulate in the Golgi complex (GC) during virus infection. These proteins have therefore been considered to be good models for studying the intracellular transport to and retention in the GC. In this study, I have used indirect immunofluorescence to localize in COS cells the Uukuniemi virus glycoproteins G1 and G2 expressed together or separately from cloned cDNAs with use of simian virus 40-based vectors. When expressed together from the full-length cDNA, G1 and G2 were correctly translocated, processed, and targeted to the GC, indicating that the information for GC targeting resides in the proteins. When the proteins were expressed separately, G1 was transported to the GC and retained there. In contrast, G2 could not be detected in the GC but was most probably retained and finally degraded in the endoplasmic reticulum. However, in cells cotransfected with G1 and G2 cDNAs, the proteins could both again be found in the GC. These results suggest that G1 is a responsible for targeting to and retention of the Uukuniemi virus glycoproteins in the GC. G2 would thus accumulate in the GC by virtue of its binding to G1.  相似文献   

3.
Using the Semliki Forest virus (SFV) and Sindbis virus (SIN) cDNAs we have constructed recombinants in which the spike genes were exchanged. Analyses of expression showed that the SFV/SIN(spike) RNA directed efficient assembly of infectious virus, whereas the reciprocal SIN/SFV(spike) RNA was completely unable to assemble virus. This was apparently due to a defective capsid-spike interaction.  相似文献   

4.
When the ts-1 mutant of Semliki Forest virus (SFV) was grown in chick embryo or BHK 21 cells at the restrictive temperature (39 degrees C), its membrane glycoproteins were arrested in the endoplasmic reticulum, but started to migrate to the cell surface once the cultures were shifted to the permissive temperature (28 degrees C). If the temperature of infected cells was raised back to 39 degrees C, ts-1 glycoproteins disappeared from the cell surface as evidenced by loss of surface immunofluorescence and by radioimmunoassay based on the binding of 125I-labeled protein A. This phenomenon was specific for ts-1 at 39 degrees C as it was observed neither in cells infected with wild-type SFV at 39 degrees C nor with ts-1 at 28 degrees C. The disappearance of the ts-1 glycoproteins was due to internalization. The internalized proteins were digested, as shown by specific decrease of virus glycoproteins labelled with [35S]methionine at 39 degrees C before shift to 28 degrees C, and by concomitant release of acid soluble 35S-activity into the culture medium. Ts-1 infected cells were treated before shift back to 39 degrees C with Fab' fragments, prepared from IgG against the viral membrane glycoproteins. After shift back to 39 degrees C, the Fab' fragments disappeared from the cell surface. In the presence of chloroquine, they could be visualized in vesicular structures, using an anti-IgG-fluorescein isothiocyanate conjugate. The internalization of ts-1 glycoproteins was not inhibited by carbonylcyanide p-trifluoromethoxy phenylhydrazone, chloroquine, cytochalasin B, vinblastine, colcemid, or monensin.  相似文献   

5.
Binding of Semliki Forest virus and its spike glycoproteins to cells.   总被引:8,自引:0,他引:8  
We have studied the binding of the Semliki Forest virus and its isolated spike glycoproteins, in the form of water-soluble octameric complexes, to various cells at 5 degrees C. The number of viruses bound per cell increased strongly with increasing free concentrations of virus up to about 0.2 nM. At higher concentrations smaller increases in binding were observed but saturation was not achieved. The number of viruses bound at a given free concentration was widely different for different cells. For some cells the binding of the virus was maximal at pH 6.8 with little decrease at lower pH, for other cells it was maximal around pH 6.0. The spike protein complexes were used at 100 times higher molar concentrations than the virus. The binding increased strongly with increasing free concentrations up to about 50 nM and saturation was obtained at higher concentrations. Up to 1.3 X 10(6) spike protein complexes could be bound per cell but great variation could be seen between different cell types. For all cells maximal binding was found below pH 6.0. Together with earlier observations, our results suggest that the virus can bind to a cell by two different modes. Around neutral pH the virus binds to specific glycoproteins and at low pH unspecifically to the lipids of the plasma membrane. The possible physiological roles of these two types of binding are discussed.  相似文献   

6.
We studied the maturation of Uukuniemi virus and the localization of the viral surface glycoproteins and nucleocapsid protein in infected cells by electron microscopy, indirect immunofluorescence, and immunoelectron microscopy with specific antisera prepared in rabbits against the two glycoproteins G1 and G2 and the nucleocapsid protein N. Electron microscopy of thin sections from infected cells showed virus particles maturing at smooth-surfaced membranes close to the nucleus. Localization of the G1/G2 and N proteins by indirect immunofluorescence at different stages after infection showed the antigens to be present throughout the cell interior but concentrated in the juxtanuclear region. The G1/G2 antiserum also appeared to stain the nuclear and plasma membranes. Double staining with tetramethylrhodamine isothiocyanate-conjugated wheat germ agglutinin, which preferentially stains the Golgi complex, and fluorescein isothiocyanate-conjugated anti-rabbit immunoglobulin G, which stained the G1/G2 or N proteins, showed that the staining of the juxtanuclear region coincided. Similarly, double staining for thiamine pyrophosphatase, an enzyme activity specific for the Golgi complex, showed the fluorescence and the cytochemical stain to coincide in the juxtanuclear region. Immunoperoxidase electron microscopy of cells permeabilized with saponin revealed that the viral glycoproteins were present in the rough endoplasmic reticulum and the nuclear and Golgi membranes; the latter was heavily stained. With this method, the N protein was localized to the cytoplasm, especially around smooth-surfaced vesicles in the Golgi region. Taken together, the results indicate that Uukuniemi virus and its structural proteins accumulate in the Golgi complex, supporting the idea that this compartment rather than the plasma membrane is the site of virus maturation. This raises the interesting possibility that deficient transport of the glycoproteins to the plasma membrane and hence their accumulation in the Golgi complex determines the site of virus maturation.  相似文献   

7.
The effect of the carboxylic ionophore monensin on the maturation of Uukuniemi virus, a bunyavirus, and the transport of its two membrane glycoproteins, G1 and G2, were studied in chicken embryo fibroblasts and baby hamster kidney cells. Virus maturation, which occurs in the Golgi complex (E. Kuismanen, K. Hedman, J. Saraste, and R. F. Pettersson, Mol. Cell. Biol. 2:1444-1458, 1982; E. Kuismanen, B. B?ng, M. Hurme, and R. F. Pettersson, J. Virol. 51:137-146, 1984), was effectively inhibited by the drug (1 or 10 microM) as studied by electron microscopy and by assaying the release of infectious or radiolabeled virus. Immunoelectron microscopy showed that association of viral nucleocapsids with the cytoplasmic surface of glycoprotein-containing Golgi membranes, a prerequisite for virus budding, was unaffected by monensin. In the presence of the drug, the virus glycoproteins assembled into long, tubular structures extending into the lumen of Golgi-derived vacuoles, suggesting that monensin inhibited a terminal step in the assembly of the virus. Intracellular transport and expression of the virus membrane glycoproteins G1 and G2 at the cell surface were not inhibited by monensin as studied by immunocytochemical and radiolabeling techniques. Pulse-chase experiments in the presence of monensin showed that intracellular G1 acquired only partially endo-H-resistant glycans. The sialylation of G1 appearing on the cell surface in the presence of the drug was decreased, whereas sialylation of G2 apparently was inhibited to a lesser extent, as shown by external labeling of the cells with the periodate-boro[3H]hydride method. Thus, monensin exerted a differential effect on the terminal glycosylation of G1 and G2. Unlike several membrane and secretory glycoproteins, both G1 and G2 could enter a functional transport pathway in the presence of monensin and become expressed at the cell surface.  相似文献   

8.
Biogenesis of the Semliki Forest virus RNA replication complex   总被引:12,自引:11,他引:1       下载免费PDF全文
The nonstructural (ns) proteins nsP1 to -4, the components of Semliki Forest virus (SFV) RNA polymerase, were localized in infected cells by confocal microscopy using double labeling with specific antisera against the individual ns proteins. All ns proteins were associated with large cytoplasmic vacuoles (CPV), the inner surfaces of which were covered by small invaginations, or spherules, typical of alphavirus infection. All ns proteins were localized by immuno-electron microscopy (EM) to the limiting membranes of CPV and to the spherules, together with newly labeled viral RNA. Along with earlier observations by EM-autoradiography (P. M. Grimley, I. K. Berezesky, and R. M. Friedman, J. Virol. 2:326–338, 1968), these results suggest that individual spherules represent template-associated RNA polymerase complexes. Immunoprecipitation of radiolabeled ns proteins showed that each antiserum precipitated the other three ns proteins, implying that they functioned as a complex. Double labeling with organelle-specific and anti-ns-protein antisera showed that CPV were derivatives of late endosomes and lysosomes. Indeed, CPV frequently contained endocytosed bovine serum albumin-coated gold particles, introduced into the medium at different times after infection. With time, increasing numbers of spherules were also observed on the cell surfaces; they were occasionally released into the medium, probably by secretory lysosomes. We suggest that the spherules arise by primary assembly of the RNA replication complexes at the plasma membrane, guided there by nsP1, which has affinity to lipids specific for the cytoplasmic leaflet of the plasma membrane. Endosomal recycling and fusion of CPV with the plasma membrane can circulate spherules between the plasma membrane and the endosomal-lysosomal compartment.  相似文献   

9.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

10.
J Saraste  E Kuismanen 《Cell》1984,38(2):535-549
The effect of reduced temperature on synchronized transport of SFV membrane proteins from the ER via the Golgi complex to the surface of BHK-21 cells revealed two membrane compartments where transport could be arrested. At 15 degrees C the proteins could leave the ER but failed to enter the Golgi cisternae and accumulated in pre-Golgi vacuolar elements. At 20 degrees C the proteins passed through Golgi stacks but accumulated in trans-Golgi cisternae, vacuoles, and vesicular elements because of a block affecting a distal stage in transport. Both blocks were reversible, allowing study of the synchronous passage of viral membrane proteins through the Golgi complex at high resolution by immunolabeling in electron microscopy. We propose that membrane proteins enter the Golgi stack via tubular extensions of the pre-Golgi vacuolar elements which generate the Golgi cisternae. The proteins pass across the Golgi apparatus following cisternal progression and enter the post-Golgi vacuolar elements to be routed to the cell surface.  相似文献   

11.
Efficient export of secretory proteins through a vacuolized Golgi complex   总被引:1,自引:0,他引:1  
The transport of the secretory proteins fibronectin (FN) and procollagen (PC) was studied in cells infected with the temperature-sensitive mutant ts 12 of Uukuniemi virus. Using pulse-labeling followed by immunoprecipitation and SDS-PAGE (FN), or by determination of radioactivity incorporated into hydroxyproline (PC) at different time points we could show that the secretion rates for these proteins were normal although the Golgi complex had become vacuolized as a result of infection with the virus. We conclude that such a morphologically altered Golgi can still carry out effective transport of secretory proteins.  相似文献   

12.
We have investigated the oligomerization and intracellular transport of the membrane glycoproteins of Punta Toro virus, a member of the Phlebovirus genus of the family Bunyaviridae, which is assembled by budding in the Golgi complex. By using one- or two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chemical cross-linking, and sucrose gradient centrifugation, we found that the majority of the G1 and G2 glycoproteins are assembled into noncovalently linked G1-G2 heterodimers. At the same time, a fraction of the G2 protein, possibly produced independently of the G1 protein, is assembled into G2 homodimers. Kinetic analysis indicates that heterodimerization occurs between newly synthesized G1 and G2 within 3 min after protein synthesis, and that the G1 and G2 glycoproteins are associated as dimeric forms both during transport and after accumulation in the Golgi complex. Analysis of a G1-truncated G2 mutant, which is also targeted to the Golgi complex, showed that these molecules also assemble into dimeric forms, which are linked by disulfide bonds. Both the G1-G2 heterodimer and the G2 homodimer were found to be able to exit from the endoplasmic reticulum. Differences in transport kinetics observed for the G1 and G2 proteins may be due to the differences in the transport efficiency between the G1-G2 heterodimer and the G2 homodimer from the endoplasmic reticulum to the Golgi complex. These and previous results (S.-Y. Chen, Y. Matsuoka, and R.W. Compans, Virology 183:351-365, 1991) suggest that Golgi retention of the G2 homodimer occurs by association with the G1-G2 heterodimer, whereas the Golgi targeting of the G1-G2 heterodimer occurs by a specific retention mechanism.  相似文献   

13.
Semliki Forest virus (SFV) is a mosquito-transmitted pathogen of small rodents, and infection of adult mice with SFV4, a neurovirulent strain of SFV, leads to lethal encephalitis in a few days, whereas mice infected with the avirulent A7(74) strain remain asymptomatic. In adult neurons, A7(74) is unable to form virions and hence does not reach a critical threshold of neuronal damage. To elucidate the molecular mechanisms of neurovirulence, we have cloned and sequenced the entire 11,758-nucleotide genome of A7(74) and compared it to the highly neurovirulent SFV4 virus. We found several sequence differences and sought to localize determinants conferring the neuropathogenicity by using a panel of chimeras between SFV4 and a cloned recombinant, rA774. We first localized virulence determinants in the nonstructural region by showing that rA774 structural genes combined with the SFV4 nonstructural genome produced a highly virulent virus, while a reciprocal recombinant was asymptomatic. In addition to several amino acid mutations in the nonstructural region, the nsp3 gene of rA774 displayed an opal termination codon and an in-frame 21-nucleotide deletion close to the nsp4 junction. Replacement in rA774 of the entire nsp3 gene with that of SFV4 reconstituted the virulent phenotype, whereas an arginine at the opal position significantly increased virulence, leading to clinical symptoms in mice. Completion of the nsp3 deletion in rA774 did not increase virulence. We conclude that the opal codon and amino acid mutations other than the deleted residues are mainly responsible for the attenuation of A7(74) and that the attenuating determinants reside entirely in the nonstructural region.  相似文献   

14.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

15.
Froelich S  Tai A  Kennedy K  Zubair A  Wang P 《PloS one》2011,6(6):e21491
Lentiviruses have recently attracted considerable interest for their potential as a genetic modification tool for dendritic cells (DCs). In this study, we explore the ability of lentiviruses enveloped with alphaviral envelope glycoproteins derived from Semliki Forest virus (SFV) to mediate transduction of DCs. We found that SFV glycoprotein (SFV-G)-pseudotyped lentiviruses use C-type lectins (DC-SIGN and L-SIGN) as attachment factors for transduction of DCs. Importantly, SFV-G pseudotypes appear to have enhanced transduction towards C-type lectin-expressing cells when produced under conditions limiting glycosylation to simple high-mannose, N-linked glycans. These results, in addition to the natural DC tropism of SFV-G, offer evidence to support the use of SFV-G-bearing lentiviruses to genetically modify DCs for the study of DC biology and DC-based immunotherapy.  相似文献   

16.
17.
The quaternary structure of the membrane glycoproteins E1, E2 and E3 of Semliki Forest virus has been determined in intact virus and in the protein complexes obtained after Triton X100 solubilization. Intact and solubilized virus were treated with a cleavable cross-linking reagent and the covalently cross-linked glycoprotein complexes were isolated and characterized using antibodies specific for the E1 and E2 membrane glycoproteins. The isolation and characterization procedure was done in a low sodium dodecyl sulphate concentration which prevented non-covalent association between glycoprotein species, but did not abolish antigen-antibody binding.The major glycoprotein complex seen after cross-linking of either intact or Triton X100 solubilized virus was an approximately 100,000 molecular weight species composed of E1-E2 heterodimers only. These findings show that E1 and E2 form a complex in the virus and that this complex is retained after solubilization with Triton X100. The smallest membrane glycoprotein E3 was not cross-linked to the other proteins and was therefore lost in the isolation procedure. However, the presence of E3 together with E1 and E2 in complexes obtained after Triton X100 solubilization of intact virus suggests that an E1-E2-E3 trimer is present in the virus. It is likely that this trimer forms the spike-like structures seen on the surface of the virus.We have observed that antibody specific for one component of the virus glycoprotein complex can induce rearrangement of uncross-linked complexes in Triton X100 solubilized form. This fact should be considered when using specific antibody for characterization of protein complexes.  相似文献   

18.
The biosynthesis of the heavy chains of two membrane glycoproteins, identified as immunoglobulin M and histocompatibility antigens, has been studied in [35S]methionine pulse-chase experiments by one and two-dimensional gel electrophoresis. Terminal sugar addition results in marked shifts in gel mobility that are mainly due to sialic acid addition, since they are sensitive to neuraminidase. These shifts are prevented when the ionophore monensin is present during the chase incubation. We conclude that both membrane IgM2 and H2 heavy chains normally pass through the Golgi subsite defined by monensin and acquire terminal sialic acid distal to this site. Analysis of surface-iodinated control and monensin-treated cells indicates that, in the presence of monensin, newly synthesized, incompletely glycosylated IgM and H2 are not transported to the cell surface. Thus these membrane proteins appear to follow the same intracellular pathway as secretory proteins.  相似文献   

19.
《Cell》2023,186(10):2208-2218.e15
  1. Download : Download high-res image (386KB)
  2. Download : Download full-size image
  相似文献   

20.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radio-active monosaccharides. promnase digenst of the virus chromatographer on Bio-Gel P 6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson J. and Clamp J.R. (1971) Biochem. J. 123, 739–745) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Wether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggast that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号