首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation inhibiting activity (DIA/LIF) and mouse development.   总被引:9,自引:0,他引:9  
Analysis of the differentiation in culture of murine embryonic stem (ES) cells has resulted in the identification and characterization of the regulatory factor differentiation inhibiting activity (DIA). DIA specifically suppresses differentiation of the pluripotential ES cells without compromise of their developmental potential. DIA is identical to the pleiotropic cytokine leukaemia inhibitory factor (LIF) which has a broad range of biological activities in vitro and in vivo. It is produced in both diffusible and matrix-localised forms whose expression is differentially regulated. The compartmentalization of DIA/LIF and the modulation of its expression during stem cell differentiation and by other cytokines may be significant elements in the control of early embryo development. These features may also indicate general principles of the regulatory networks which govern stem cell renewal and differentiation in later development.  相似文献   

2.
The regulatory factor Differentiation Inhibiting Activity/Leukaemia Inhibitory Factor (DIA/LIF) suppresses the differentiation of cultured embryonic stem (ES) cells. In the present study, it is shown that ES cell lines can be derived and maintained in the absence of feeder layers using medium supplemented with purified DIA/LIF. These cells can differentiate normally in vitro and in vivo and they retain the capacity for germ-line transmission. DIA/LIF therefore fulfils the essential function of feeders in the isolation of pluripotential stem cells.  相似文献   

3.
4.
5.
6.
Embryonic stem (ES) cells are pluripotent-undifferentiated cells that have a great interest for the investigation of developmental biology. Murine ES cells maintain their pluripotency by the supplementation of the leukemia inhibitory factor (LIF). LIF is reported to act as a matrix-anchored form, and immobilized cytokines are useful to sustain their signaling on target cells. In this study, we used the immobilizable fusion protein composed of LIF and IgG-Fc region, which was used as a model of the matrix-anchored form of LIF to establish a novel system for ES cell culture and to investigate the effect of immobilized LIF on maintenance of ES cell pluripotency. Mouse ES cells maintained their undifferentiated state on the surface coated with LIF-Fc. Furthermore, when cultured on the co-immobilized surface with LIF-Fc and E-cadherin-Fc, mouse ES cells showed characteristic scattering morphologies without colony formation, and they could maintain their undifferentiated state and pluripotency without additional LIF supplementation. The activation of LIF signaling was sustained on the co-immobilized surface. These results indicate that immobilized LIF and E-cadherin can maintain mouse ES cells efficiently and that the immobilizable LIF-Fc fusion protein is useful for the investigation of signaling pathways of an immobilized form of LIF in the maintenance of ES cell pluripotency.  相似文献   

7.
8.
9.
10.
11.
Mouse embryonic stem (ES) cells can proliferate indefinitely in an undifferentiated state in the presence of leukemia inhibitory factor (LIF), or differentiate into all three germ layers upon removal of this factor. To determine cellular factors associated with self-renewal of undifferentiated ES cells, we used polymerase chain reaction-assisted cDNA subtraction to screen genes that are expressed in undifferentiated ES cells and down-regulated after incubating these cells in a differentiation medium without LIF for 48 h. The mRNA expression of a tetraspanin transmembrane protein, CD9, was high in undifferentiated ES cells and decreased shortly after cell differentiation. An immunohistochemical analysis confirmed that plasma membrane-associated CD9 was expressed in undifferentiated ES cells but low in the differentiated cells. Addition of LIF to differentiating ES cells reinduced mRNA expression of CD9, and CD9 expression was accompanied with a reappearance of undifferentiated ES cells. Furthermore, activation of STAT3 induced the expression of CD9, indicating the LIF/STAT3 pathway is critical for maintaining CD9 expression. Finally, addition of anti-CD9 antibody blocked ES cell colony formation and reduced cell viability. These results indicate that CD9 may play a role in LIF-mediated maintenance of undifferentiated ES cells.  相似文献   

12.
Murine embryonic stem (ES) cells can be maintained as stem cells in vitro only in the presence of feeder cells or a soluble factor produced by a number of cell lines. We have previously demonstrated that leukemia inhibitory factor (LIF) is the molecule which prevents ES cell differentiation in culture. In this report we demonstrate that recombinant LIF can substitute for feeder cells in maintaining the full developmental potential of ES cells. The totipotent D3 ES cell line, previously isolated and maintained on growth-arrested primary embryo fibroblasts, was transferred to media supplemented with 1000 U/ml (10 ng/ml) recombinant LIF. In the presence of LIF the ES cells were maintained for over 2 months as undifferentiated cells in the absence of any feeder cells. When injected into blastocysts the ES cells which had been maintained in LIF-supplemented media efficiently formed germ-line chimeras.  相似文献   

13.
Leukemia Inhibitory Factor (LIF) interacts with two classes of high affinity binding sites on rat UMR cells cultured in monolayer. One class of binding sites was found to be localized in the extracellular matrix (ECM) after removal of cells from the culture dish. The interaction of LIF with ECM-localized binding sites is not dependent upon either glycosylation of LIF or the presence of extracellular glycosyaminoglycans. Chemical cross-linking studies demonstrate that LIF interacts with a 200-kD cell-associated protein and a 140-kD ECM- localized protein. A 140-kD protein could also be specifically precipitated from solubilised metabolically radiolabeled UMR ECM by antibodies directed against LIF by virtue of its ability to form a stable complex with unlabeled LIF. In addition, soluble LIF associated with this ECM-localized protein is biologically active in terms of inhibition of ES cell differentiation. The properties of ECM-localized 140-kD species are very similar to those of the secreted form of the LIF receptor suggesting that the ECM localization of LIF and LIF signal transduction may be closely coupled.  相似文献   

14.
15.
The aim of our study was to evaluate whether ciliary neurotrophic factor (CNTF) can substitute for leukaemia inhibitory factor (LIF) in maintaining pluripotential embryonic stem (ES) cells in culture. Two subclones of D3 ES cells were used to assess cell proliferation and differentiation in the presence of CNTF, LIF or Buffalo rat liver (BRL) cell-conditioned medium, or in the absence of exogenous differentiation inhibiting factors. ES cells maintained in medium supplemented with CNTF for up to four weeks were injected into blastocysts to investigate theirin vivo pluripotency in terms of chimaera formation. CNTF inhibited ES cell differentiation in a dose-dependent manner. The most effective concentration was 10 ng CNTF per ml of medium. The effects of CNTF on ES cell differentiation and proliferation were comparable to those of LIF at the same concentration. BRL cell-conditioned medium was less effective at preventing ES cell differentiation but induced their proliferation very markedly. Both ES cell clones efficiently formed chimaeras after long-term culture with CNTF as the only differentiation inhibiting agent. The ability of these ES cells to colonize the germ-line is the ultimate proof that CNTF can preserve the pluripotency of ES cells.  相似文献   

16.
PI3K signaling pathway plays a significant role in embryonic stem cells (ES cells) self‐renewal. Overexpression of Nanog maintains mouse ES cells pluripotency independent of leukemia inhibitory factor (LIF). However, little is known about the effect of PI3K signaling pathway on ES cells with Nanog overexpression. Our experiments aimed to explore the relationship between PI3K signaling pathway and Nanog expression in ES cells. We observed the effect of LY294002, a specific inhibitor of PI3K pathway, on wild‐type J1 cells and Nanog overexpressing (Ex‐Nanog) J1 cells in the presence or absence of LIF. With LY294002 treatment, both of them lost their ES features even in the presence of LIF. But the differentiation induced by LY294002 on Ex‐Nanog J1 cells was slighter lower than that on wild‐type J1 cells. These results indicate that inhibition of PI3K pathway induces mouse ES cells differentiation. Exogenous Nanog sustains mouse ES cells pluripotency independent of LIF, and alleviates the differentiation induced by LY294002. But it is insufficient to totally reverse the differentiation. J. Cell. Biochem. 106: 1041–1047, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The leukemia inhibitory factor (LIF), which is a very expensive reagent, can be used to efficiently control the differentiation of human embryonic stem (ES) cells at concentrations >1000 units/ml for 6–7 days. However, in supplement <500 units/ml, most ES cells differentiate within 3–4 days in in vitro cultures. α-Pinene from Pinus densiflora S. and a polysaccharide (MW 25 kDa) from A. gigas Nakai showed promising results as a substitute for LIF in cultivating ES cells. By adding both 0.5 (μg/ml) of α-pinene and the polysaccharide, most of the ES cells could be maintained under undifferentiated conditions after adding only 100 units/ml of LIF. It was found that α-pinene can play a role in preventing the ES cells from differentiating and the polysaccharide can be used to grow the ES cells. The results suggest that human ES cells can be maintained under undifferentiated conditions by supplementing both plant extracts, which can result in a reduction in the amount of LIF needed.  相似文献   

18.
Cell gene expression is affected by both the kind and mode of growth factor stimulation (diffusive vs. non-diffusive). Epidermal growth factor (EGF) was pattern-immobilized on a polystyrene plate. Although the growth of the rat phaeochromocytoma cell line PC12 is stimulated by diffusible EGF, and differentiation is stimulated by diffusible nerve growth factor (NGF), immobilized (non-diffusible) EGF stimulated PC12 differentiation. The immobilized EGF caused a long-lasting stimulation of the intracellular signal protein mitogen-associated protein MAP kinase (MAPK, also known as ERK) and p38 (a subfamily of the MAPK superfamily) in cells, as did diffusible NGF. The switching between growth stimulation and differentiation is considered to be due to the duration of the stimulus. The function of the biosignal conjugate was regulated using conjugation methodology.  相似文献   

19.
M Ernst  D P Gearing    A R Dunn 《The EMBO journal》1994,13(7):1574-1584
The role played by the Src-related tyrosine kinase, Hck, in embryonic stem (ES) cell differentiation was investigated by replacing a conserved C-terminally located tyrosine with phenylalanine by gene targeting. Targeted ES cells display a 7- to 9-fold elevation in constitutive Hck kinase activity and require approximately 15 times less leukaemia inhibitory factor (LIF) than parental ES cells to maintain their stem cell character in vitro. We also demonstrate a rapid and transient increase in Hck tyrosine kinase activity in parental ES cells stimulated by LIF and, finally, show that Hck is physically associated with gp130, an affinity converter and signal transducing component of the LIF receptor. Thus, these results provide biological and biochemical evidence that Hck participates in signal transduction from the LIF receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号