首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
经验改变大鼠听皮层神经元的特征频率   总被引:3,自引:1,他引:2  
应用常规电生理学技术,以神经元的特征频率和频率调谐曲线为指标,研究大鼠听皮层神经元特征频率的可塑性. 结果表明,在给予的条件刺激频率和神经元特征频率相差1.0 kHz范围内,条件刺激可诱导50%以上神经元特征频率发生完全偏移,并可分为向频率调谐曲线的低频端偏移、高频端偏移,或两侧均可偏移三种类型. 其中,神经元的特征频率高、Q10-dB值大和频率调谐曲线对称指数大于零的神经元,其特征频率偏向频率调谐曲线高频端的概率更高. 结果提示,经验可改变大鼠听皮层神经元的特征频率,为深入研究中枢神经元功能活动可塑性的机制提供了重要实验资料.  相似文献   

2.
目的:探讨声音强度对大鼠听皮层神经元特征频率可塑性的影响。方法:采用常规电生理学细胞外记录技术,测定不同声刺激强度下,听皮层神经元的特征频率和调谐曲线,比较条件刺激前后的变化。结果:在条件刺激声频率和神经元的特征频率相差±1.0kHz范围内,条件刺激诱导的神经元特征频率可塑性与条件刺激强度有关,较高的刺激强度比较低刺激强度诱导的特征频率可塑性概率高;特征频率可塑性的概率与神经元的频率调谐曲线类型相关,但这种相关几乎不受条件刺激声强度影响。结论:条件声刺激强度可明显影响大鼠听皮层神经元特征频率的可塑性。  相似文献   

3.
在自然环境中,人和动物常在一定的背景噪声下感知信号声刺激,然而,关于低强度的弱背景噪声如何影响听皮层神经元对声刺激频率的编码尚不清楚.本研究以大鼠听皮层神经元的频率反应域为研究对象,测定了阈下背景噪声对79个神经元频率反应域的影响.结果表明,弱背景噪声对大鼠初级听皮层神经元的听反应既有抑制性影响、又有易化性影响.一般来说,抑制性影响使神经元的频率调谐范围和最佳频率反应域缩小,易化性影响使神经元的频率调谐范围和最佳频率反应域增大.对于少数神经元,弱背景噪声并未显著改变其频率调谐范围,但却改变了其最佳频率反应域范围.弱背景噪声对63.64%神经元的特征频率和55.84%神经元的最低阈值无显著影响.神经元频率调谐曲线的尖部比中部更容易受到弱背景噪声的影响.该研究结果有助于我们进一步理解复杂声环境下大脑听皮层对听觉信息的编码机制.  相似文献   

4.
在30只氨基甲酸乙酯麻醉的SD大鼠上记录神经元单位放电,观察短纯音诱发的皮层A Ⅰ区神经元ON-OFF反应的特性及电刺激杏仁外侧核(lateral amygdaloid nucleus,LA)对ON-OFF反应以及调谐曲线的影响.实验证实,A Ⅰ区神经元ON-OFF反应的模式与纯音刺激的强度、频率及作用时程有关;刺激LA可以抑制ON-OFF反应的放电频数,使反应的阈值升高,或使反应放电构型发生变化;此外,刺激LA能使ON-OFF神经元的调谐曲线变窄,Q10数值增大.研究结果不仅表明ON-OFF神经元能对纯音刺激的时程、强度和频率等多种信息进行编码,而且还证明杏仁外侧核可以在皮层水平参与听觉信息的调制,削弱或衰减某些听觉信息,导致整个调谐曲线上移变窄,从而提高A Ⅰ区ON-OFF神经元的频率选择性能,有利于检测外界嘈杂环境中特定的听觉信息.  相似文献   

5.
Yang WW  Zhou XM  Zhang JP  Sun XD 《生理学报》2007,59(6):784-790
本文应用常规电生理学技术,研究电刺激大鼠内侧额叶前皮质(medial prefrontal cortex,mPFC)对初级听皮层神经元频率感受野(receptive field,RF)可塑性的调制。电刺激mPFC,137个听皮层神经元(72.8%)RF可塑性受到影响,其中抑制性调制71个神经元(37.7%),易化性调制66个神经元(35.1%),其余51个神经元(27.2%)不受影响。mPFC的抑制性调制效应表现为,RF的偏移时间延长,恢复时间缩短。相反,mPFC的易化性调制效应表现为,RF的偏移时间缩短,恢复时间延长。电刺激mPFC对RF可塑性的调制与声、电刺激之间的时间间隔有关,最佳时间间隔介于5-30ms之间。结果提示,大鼠mPFC可以调制听皮层神经元的功能活动,可能参与听觉学习记忆过程。  相似文献   

6.
白静  唐佳 《生物学杂志》2011,28(2):62-65
频率作为声音的一个重要参数,在听敏感神经元对声音进行分析和编码过程中扮演重要角色。一般用频率调谐曲线来表示听敏感神经元的频率调谐特性,并用Qn(10,30,50)值表达频率调谐曲线的尖锐程度,Qn值越大,频率调谐曲线也越尖锐,神经元的频率调谐能力越好,对频率的分辨能力越高。从听觉外周到中枢,听敏感神经元的频率调谐逐级锐化,而这种锐化主要是由听中枢的多种抑制性神经递质的作用而产生的,其中起主要作用的是GABA能和甘氨酸能神经递质。此外,离皮层调控,双侧下丘间的联合投射以及弱噪声前掩蔽等因素也会影响听敏感神经元的频率调谐特性。  相似文献   

7.
在30只氨基甲酸乙酯麻醉的SD大鼠上记录神经元单位放电,观察短纯音诱发的皮层AI区神经元ON-OFF反应的特性及电刺激杏仁外侧核(lateral amygdaloid nucleus,LA)对ON-OFF反应以及调谐曲线的影响。实验证实,AI区神经元ON-OFF反应的模式与纯音刺激的强度、频率及作用时程有关;刺激LA可以抑制ON-OFF反应的放电频数,使反应的阈值升高,或使反应放电构型发生变化;此外,刺激LA能使ON-OFF神经元的调谐曲线变窄,Q10数值增大。研究结果不仅表明ON-OFF神经元能对纯音刺激的时程、强度和频率等多种信息进行编码,而且还证明杏仁外侧核可以在皮层水平参与听觉信息的调制,削弱或衰减某些听觉信息,导致整个调谐曲线上移变窄,从而提高AI区ON-OFF神经元的频率选择性能,有利于检测外界嘈杂环境中特定的听觉信息。  相似文献   

8.
γ-氨基丁酸能抑制可锐化大棕蝠听皮层神经元频率调谐   总被引:8,自引:0,他引:8  
本实验使用了 9只成年健康的大棕蝠 (Eptesicusfuscus)。采用双声刺激和多管电极电泳导入荷包牡丹碱 (bicuculline,Bic)的方法 ,研究了γ 氨基丁酸 (γ aminobutyricacid ,GABA)能抑制在锐化听皮层 (primaryauditorycortex ,AC ,即初级听皮层 )神经元频率调谐中的作用。结果发现 :正常AC神经元的频率调谐曲线表现出单峰开放式、多峰开放式和单峰封闭式 3种类型 ;用双声刺激方法研究证实 ,至AC神经元的抑制性输入能被抑制性声刺激所激活 ,且这种神经抑制有自身的最佳频率 ,根据其对兴奋反应的影响程度和系统地改变抑制性声刺激的强度 ,可在兴奋性频率调谐曲线或兴奋区的高频边或 /和低频边测出抑制性频率调谐曲线或抑制区 ;当这种抑制性输入被抑制性声刺激激活后 ,能降低阈上 10dB声强引起的兴奋反应的发放率 ,抑制效率随抑制声刺激强度的增强而加强 ;电泳GABAa受体拮抗剂荷包牡丹碱Bic后 ,可不同程度地去GABA能抑制 ,扩宽频率调谐曲线 ,使多峰调谐曲线变成单峰 ,封闭型变成开放型。表明GABA能抑制参与构成至AC神经元的抑制性输入 ,在正常情况下这种抑制有助于提高中枢听神经元的信号 /噪声比和频率分析能力 ,并锐化频率调谐。因此本结果提示 ,声音的各参量中所包含的信息从外周传入中枢后 ,随着中枢的升  相似文献   

9.
应用微电极技术测定了45只大鼠325根单一听神经纤维的特征频率及其阈值和调谐曲线。测得特征频率的最低值为0.58kHz,最高值为62.6kHz。敏感度最高的频带在20~50kHz,敏感度最高的阈值为6dB(SPL),其相应的频率为27.49kHz。由最低阈值连线延续到边侧的调谐曲线,便形成了大鼠整个的听反应阈曲线。该听反应阈曲线与行为测听所观察到的听力曲线近似。  相似文献   

10.
C57BL/6小鼠听皮层脑片的长时程增强特性   总被引:1,自引:0,他引:1  
采用脑片细胞外记录群体细胞兴奋性突触后电位方法,在成年C57BL/6小鼠听皮层上,研究长时程增强(10ng-termpotentiation,LTP)特征。用100Hz高频电脉冲刺激听皮层白质,可在听皮层灰质Ⅱ/Ⅲ层记录到明显的LTP。根据条件刺激后LTP的变化特征,将其分为缓慢上升(A类)和短暂快速上升(B类)两种类型。使用模拟的θ节律刺激参数,可更有效地诱导听皮层LTP,其群体细胞兴奋性突触后电位斜率增加更为明显(P<0.01),诱导成功率也更高。  相似文献   

11.
Summary A dorsal approach to the eighth nerve and free-field stimulation were used to investigate the effect of sound direction and intensity on phase locking in auditory nerve fibers of the leopard frog Rana pipiens pipiens.Tuning curves of 75 auditory neurons were analyzed (Fig. 2). Amphibian papillar neurons, but not basilar papillar neurons, exhibit significant phase locking to short tone bursts at the characteristic frequency (CF), the degree of phase locking (vector strength) decreasing with the neuron's CF (Figs. 3, 4 and 10E). Vector strength increases with sound pressure level to saturate about 20 dB above threshold, while the preferred firing phase is only slightly affected (Figs. 5 and 6).In contrast, sound direction hardly affects vector strength (Figs. 7, 8, 9A and 10A and C), but has a strong influence on the preferred firing phase (Figs. 7, 8, 9B and C, 10B and D): With respect to anterior tone presentation there are phase lags for ipsilateral and phase leads for posterior and contralateral presentation. Phase differences between both ears show a sinusoidal or cardioid/ovoidal directional characteristic; maximum differences are found with antero-lateral tone presentation (Fig. 11). The directionality of phase locking decreases with the neuron's CF (Fig. 10F) and only slightly changes with sound pressure level (Fig. 12). Thus, phase locking of amphibian papilla neurons can potentially provide intensity-independent information for sound localization.Abbreviations SPL sound pressure level - FTC frequency threshold curve - CF characteristic frequency - TF test frequency - VS vector strength - AP amphibian papilla - BP basilar papilla  相似文献   

12.
基于Feng等人的神经电生理实验结果,建立了关于豹蛙(Rana pipien)半规隆凸(torus semicircularis)核团神经元频率调谐特性方向选择性反应的模型,并在此基础上讨论了模型各个参数对模型方向性反应输出的影响。结果提示:1)听觉系统两侧的相互抑制作用-双耳抑制主要决定频率调谐特性的尖锐性随方向变化的特性;2)前级神经元对不同方位外界声源刺激具有不同强度平均脉冲发放的特征则主要  相似文献   

13.
The responses of motor cortex neurons in the cat to the presentation of a single auditory click and a series of 10 clicks presented with 1,000/sec frequency were studied under conditions of chronic experiments before and after the development of an instrumental food reflex. After reflex development a single presentation of a positive conditioned stimulus (single click) markedly influenced for 7 sec the appearance of instrumental movements. At the same time, the immediate responses of motor cortex neurons to presentation of the conditioned auditory stimulus had no impact on the appearance in the motor cortex of discharges leading to the realization of instrumental movements. Consequently, motor cortex neurons do not require activation from afferent sensory inputs for the generation of such discharges. The immediate neuronal responses to conditioned stimulation did not inhibit the realization of the instrumental reflex. It is proposed that they are associated with the realization of motor function in the unconditioned defensive response evoked by the presentation of an auditory stimulus. The presence or absence of responses to auditory conditioned stimulation was dependent upon the signal meaning of the stimulus, its physical parameters, and the degree of excitability of the animal.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 539–550, July–August, 1985.  相似文献   

14.
The auditory system must represent sounds with a wide range of statistical properties. One important property is the spectrotemporal contrast in the acoustic environment: the variation in sound pressure in each frequency band, relative to the mean pressure. We show that neurons in ferret auditory cortex rescale their gain to partially compensate for the spectrotemporal contrast of recent stimulation. When contrast is low, neurons increase their gain, becoming more sensitive to small changes in the stimulus, although the effectiveness of contrast gain control is reduced at low mean levels. Gain is primarily determined by contrast near each neuron's preferred frequency, but there is also a contribution from contrast in more distant frequency bands. Neural responses are modulated by contrast over timescales of ~100?ms. By using contrast gain control to expand or compress the representation of its inputs, the auditory system may be seeking an efficient coding of natural sounds.  相似文献   

15.
Frequency is one of the fundamental parameters of sound.The frequency of an acoustic stimulus can be represented by a neural response such as spike rate,and/or first spike latency(FSL)of a given neuron.The spike rates/frequency function of most neurons changes with different acoustic ampli-tudes,whereas FSL/frequency function is highly stable.This implies that FSL might represent the fre-quency of a sound stimulus more efficiently than spike rate.This study involved representations of acoustic frequency by spike rate and FSL of central inferior colliculus(IC)neurons responding to free-field pure-tone stimuli.We found that the FSLs of neurons responding to characteristic frequency(CF)of sound stimulus were usually the shortest,regardless of sound intensity,and that spike rates of most neurons showed a variety of function according to sound frequency,especially at high intensities.These results strongly suggest that FSL of auditory IC neurons can represent sound frequency more precisely than spike rate.  相似文献   

16.
Frequency is one of the fundamental parameters of sound. The frequency of an acoustic stimulus can be represented by a neural response such as spike rate, and/or first spike latency (FSL) of a given neuron. The spike rates/frequency function of most neurons changes with different acoustic amplitudes, whereas FSL/frequency function is highly stable. This implies that FSL might represent the frequency of a sound stimulus more efficiently than spike rate. This study involved representations of acoustic frequency by spike rate and FSL of central inferior colliculus (IC) neurons responding to free-field pure-tone stimuli. We found that the FSLs of neurons responding to characteristic frequency (CF) of sound stimulus were usually the shortest, regardless of sound intensity, and that spike rates of most neurons showed a variety of function according to sound frequency, especially at high intensities.These results strongly suggest that FSL of auditory IC neurons can represent sound frequency more precisely than spike rate.  相似文献   

17.
Moita MA  Rosis S  Zhou Y  LeDoux JE  Blair HT 《Neuron》2003,37(3):485-497
We recorded neurons from the hippocampus of freely behaving rats during an auditory fear conditioning task. Rats received either paired or unpaired presentations of an auditory conditioned stimulus (CS) and an electric shock unconditioned stimulus (US). Hippocampal neurons (place and theta cells) acquired responses to the auditory CS in the paired but not in the unpaired group. After CS-US pairing, rhythmic firing of theta cells became synchronized to the onset of the CS. Conditioned responses of place cells were gated by their location-specific firing, so that after CS-US pairing, place cells responded to the CS only when the rat was within the cell's place field. These findings may help to elucidate how the hippocampus contributes to context-specific memory formation during associative learning.  相似文献   

18.
Adaptation of the spike-frequency response to constant stimulation, as observed on various timescales in many neurons, reflects high-pass filter properties of a neuron's transfer function. Adaptation in general, however, is not sufficient to make a neuron's response independent of the mean intensity of a sensory stimulus, since low frequency components of the stimulus are still transmitted, although with reduced gain. We here show, based on an analytically tractable model, that the response of a neuron is intensity invariant, if the fully adapted steady-state spike-frequency response to constant stimuli is independent of stimulus intensity. Electrophysiological recordings from the AN1, a primary auditory interneuron of crickets, show that for intensities above 60 dB SPL (sound pressure level) the AN1 adapted with a time-constant of approximately 40 ms to a steady-state firing rate of approximately 100 Hz. Using identical random amplitude-modulation stimuli we verified that the AN1's spike-frequency response is indeed invariant to the stimulus' mean intensity above 60 dB SPL. The transfer function of the AN1 is a band pass, resulting from a high-pass filter (cutoff frequency at 4 Hz) due to adaptation and a low-pass filter (100 Hz) determined by the steady-state spike frequency. Thus, fast spike-frequency adaptation can generate intensity invariance already at the first level of neural processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号