首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the three-dimensional structure of polypeptides and proteins on their ability to undergo isotopic exchange under the action of spillover hydrogen (SH) in the high temperature solid state catalytic isotope exchange reaction (HSCIE) was theoretically and experimentally studied. The HSCIE reaction in the beta-galactosidase protein from Thermoanaerobacter ethanolicus (83kDa) was studied. The influence of the beta-galactosidase structure on isotopic exchange as peptide fragments with spillover tritium was studied. The most accessible peptide fragment, which does not contribute to alpha-helix and beta-strand formations (KEMQKE215-220), had the largest relative reactivity. The one located in the contact area between the subunits (YLRDSE417-422) showed the smallest relative reactivity. The relative reactivities of these peptides differ more than 150 times. Data collected during a study devoted to the HSCIE reaction of the beta-galactosidase protein indicate that the HSCIE reaction might be employed for acquiring information about their three-dimensional structure and protein-protein interactions. The results of ab initio calculations have shown that alpha-helix formation in polypeptides decreases the reactivity in HSCIE. Hydrogen exchange in the alpha-helical fragment Trp1-Leu8 of zervamycin IIB was also analyzed using theoretical methods. It was shown by ab initio quantum-chemical calculations that the high degree of substitution of C(alpha)H for tritium in Gln3 might be associated with the participation of electron donor O and N atoms in transition state stabilization in the HSCIE reaction.  相似文献   

2.
A [3H]Dalargin preparation with a molar radioactivity of 52 Ci/mmol was obtained by the high temperature solid-state catalytic isotope exchange (HSCIE) of tritium for hydrogen at 150 degrees C. This tritium-labeled peptide was shown to completely retain its biological activity in the test of binding to opioid receptors from rat brain. The dissociation constant of the Dalargin-opioid receptor complex was found to be 4.3 nM. The dependencies of the chemical yield and the molar radioactivity on the reaction time and temperature of HSCIE were determined. The activation energy of the HSCIE reaction for the peptide was calculated to be 32 kcal/mol. The amino acid analysis showed that tritium is distributed between all the amino acid residues of [3H]Dalargin at the HSCIE reaction, with the temperature growth significantly increasing the total tritium incorporation and, especially, enhancing the radioactivity incorporation into aromatic residues.  相似文献   

3.
A [3H]Dalargin preparation with a molar radioactivity of 52 Ci/mmol was obtained by the high temperature solid-state catalytic isotope exchange (HSCIE) of tritium for hydrogen at 150°C. This tritium-labeled peptide was shown to completely retain its biological activity in the test of binding to opioid receptors from rat brain. The dissociation constant of the Dalargin-opioid receptor complex was found to be 4.3 nM. The dependences of the chemical yield and the molar radioactivity on the reaction time and temperature of HSCIE were determined. The activation energy of the HSCIE reaction for the peptide was calculated to be 32 kcal/mol. The amino acid analysis showed that tritium is distributed between all the amino acid residues of [3H]Dalargin at the HSCIE reaction, with the temperature growth significantly increasing the total tritium incorporation and, especially, enhancing the radioactivity incorporation into aromatic residues.  相似文献   

4.
Summary New catalytic reaction between a solid bioorganic compound and activated spillover tritium (ST), based on High-temperature Solid-state Catalytic Isotopic Exchange (HSCIE) was examined. The HSCIE mechanism and determination of the reactivity of hydrogen atoms in amino acids, peptides and proteins was investigated. Quantum mechanical calculations of the reactivity of hydrogen atoms in amino acids in the HSCIE reaction were done. The carbon atom with a greater proton affinity undergoes a greater exchange of hydrogen for tritium in HSCIE. The electrofilic nature of spillover hydrogen in the reaction of HSCIE was revealed. The isotope exchange between ST and the hydrogen of the solid organic compound proceeds with a high degree of configuration retention at the carbon atoms. The HSCIE reaction enables to synthesize tritium labeled proteins with a specific activity of 20–30 mCi/mg and kept biological activity.Presented at the 3rd International Congress on Amino Acids, Peptides and Analogues. Vienna, August, 23–27, 1993  相似文献   

5.
Reaction of a high-temperature solid-phase catalytic isotope exchange in peptides and proteins under the action of the catalytically activated spillover hydrogen was studied. The reaction of human recombinant insulin with deuterium and tritium at 120–140°C resulted in an incorporation of 2–6 isotope hydrogen atoms per one insulin molecule. The distribution of the isotopic label by amino acid residues of the tritium-labeled insulin was determined by the oxidation of the protein S-S-bonds by performic acid, separation of polypeptide chains, their subsequent acidic hydrolysis, amino acid analysis, and liquid scintillation counts of tritium in the amino acids. The isotopic label was shown to be incorporated in all the amino acid residues of the protein, but the higher inclusion was observed for the FVNQHLCGSHLVE peptide fragment (B1–13) of the insulin B-chain, and the His5 and His10 residues of this fragment contained approximately 45% of the whole isotopic label of the protein. Reduction of the S-S-bonds by 2-mercaptoethanol, enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius, and HPLC fractionation of the obtained peptides were also used for the analysis of the distribution of the isotopic label in the peptide fragments of the labeled insulin. Peptide fragments which were formed after the hydrolysis of the Glu-Xaa bond of the B-chain were identified by mass spectrometry. The mass spectrometric analysis of the isotopomeric composition of the deuterium-labeled insulin demonstrated that all the protein molecules participated equally in the reaction of the solid-phase hydrogen isotope exchange. The tritium-labeled insulin preserved the complete physiological activity.  相似文献   

6.
We summarize here information on the theoretical and experimental study of high-temperature (150–200°C) solid phase catalytic isotope exchange (HSCIE) carried out with amino acids, peptides, and proteins under the action of spillover hydrogen. Main specific features of the HSCIE reaction, its mechanism, and its use for studying spatial interactions in polypeptides are discussed. A virtually complete absence of racemization makes this reaction a valuable preparative method. The main regularities of the HSCIE reaction with the participation of spillover tritium have been revealed in the case of peptides and proteins, and the dependence of reactivity of peptide fragments on the spatial organization of their molecules has been studied. An important peculiarity of this reaction is that HSCIE proceeds at 150–200°C with a high degree of chirality retention in amino acids and peptides. This is provided by its reaction mechanism, which consists in a synchronous one-center substitution at the saturated carbon atom characterized by the formation of pentacoordinated carbon and a three-center bond between the carbon and the incoming and outgoing hydrogen atoms.Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 3–21.Original Russian Text Copyright © 2005 by Zolotarev, Dadayan, Borisov.  相似文献   

7.
Tritium-labeled α-conotoxin G1 with a molar radioactivity of 35 Ci/mmol and full biological activity (according to the binding to nicotinic acetylcholine receptor) was obtained by the high-temperature solid-state catalytic isotope exchange (HSCIE). The tritium distribution in the molecule of α-conotoxin G1 was revealed by3H NMR spectroscopy. Tritium was found in all amino acid residues except for the Asn4-Pro5-Ala6 fragment. The data on the comparative reactivity of C-H bonds, theab initio quantum-chemical calculation of the hydrogen exchange reaction, and the information on the spatial structures of α-conotoxin G1 in solution and in crystal state allowed us to establish that the reactivity of H atoms may be increased by their interaction with the electron donor O and N atoms at the transition state of the HSCIE reaction. A decrease in the rate of the HSCIE reaction could be caused by both a poor spatial accessibility of C-H bonds and a limited mobility of the peptide fragment containing these bonds.  相似文献   

8.
Biologically active peptides evenly labeled with tritium were used for studying the in vitro and in vivo biodegradation of the peptides. Tritium-labeled peptides with a specific radioactivity of 50-150 Ci/mmol were obtained by high temperature solid phase catalytic isotope exchange (HSCIE) with spillover tritium. The distribution of the isotope label among all amino acid residues of these peptides allows the simultaneous determination of practically all possible products of their enzymatic hydrolysis. The developed analytical method includes extraction of tritium-labeled peptides from organism tissues and chromatographic isolation of individual labeled peptides from the mixture of degradation products. The concentrations of a peptide under study and the products of its biodegradation were calculated from the results of liquid scintillation counting. This approach was used for studying the pathways of biodegradation of the heptapeptide TKPRPGP (Selank) and the tripeptide PGP in blood plasma. The pharmacokinetics of Selank, an anxiolytic peptide, was also studied in brain tissues using the intranasal in vivo administration of this peptide. The concentrations of labeled peptides were determined, and the pentapeptide TKPRP, tripeptide TKP, and dipeptides RP and GP were shown to be the major products of Selank biodegradation. The study of the biodegradation of the heptapeptide MEHFPGP (Semax) in the presence of nerve cells showed that the major products of its biodegradation are the pentapeptide HFPGP and tripeptide PGP. The enkephalinase activity of blood plasma was studied with the use of evenly tritium-labeled [Leu]enkephalin. A high inhibitory effect of Semax on blood plasma enkephalinases was shown to arise from its action on aminopeptidases. The method, based on the use of evenly tritium-labeled peptides, allows the determination of peptide concentrations and the activity of enzymes involved in their degradation on a tg scale of biological samples both in vitro and in vivo.  相似文献   

9.
Tritium-labeled alpha-conotoxin G1 with a molar radioactivity of 35 Ci/mmol and full biological activity (according to the binding to nicotinic acetylcholine receptor) was obtained by the high-temperature solid-state catalytic isotope exchange (HSCIE). The tritium distribution in the molecule of alpha-conotoxin G1 was revealed by 3H NMR spectroscopy. Tritium was found in all amino acid residues except for the Asn4-Pro5-Ala6 fragment. The data on the comparative reactivity of C-H bonds, the ab initio quantum-chemical calculation of the hydrogen exchange reaction, and the information on the spatial structures of alpha-conotoxin G1 in solution and in crystal state allowed us to establish that the reactivity of H atoms may be increased by their interaction with the electron donor O and N atoms at the transition state of the HSCIE reaction. A decrease in the rate of the HSCIE reaction could be caused by both a poor spatial accessibility of C-H bonds and a limited mobility of the peptide fragment containing these bonds.  相似文献   

10.
Biologically active peptides evenly labeled with tritium were used for studying the in vitro and in vivo biodegradation of the peptides. Tritium-labeled peptides with a specific radioactivity of 50–150 Ci/mmol were obtained by high temperature solid phase catalytic isotope exchange (HSCIE) with spillover tritium. The distribution of the isotope label among all amino acid residues of these peptides allows the simultaneous determination of practically all possible products of their enzymatic hydrolysis. The developed analytical method includes extraction of tritium-labeled peptides from organism tissues and chromatographic isolation of individual labeled peptides from the mixture of degradation products. The concentrations of a peptide under study and the products of its biodegradation were calculated from the results of liquid scintillation counting. This approach was used for studying the pathways of biodegradation of the heptapeptide TKPRPGP (Selank) and the tripeptide PGP in blood plasma. The pharmacokinetics of Selank, an anxiolytic peptide, was also studied in brain tissues using the intranasal in vivo administration of this peptide. The concentrations of labeled peptides were determined, and the pentapeptide TKPRP, tripeptide TKP, and dipeptides RP and GP were shown to be the major products of Selank biodegradation. The study of the biodegradation of the heptapeptide MEHFPGP (Semax) in the presence of nerve cells showed that the major products of its biodegradation are the pentapeptide HFPGP and tripeptide PGP. The enkephalinase activity of blood plasma was studied with the use of evenly tritium labeled [Leu]enkephalin. A high inhibitory effect of Semax on blood plasma enkephalinases was shown to arise from its action on aminopeptidases. The method, based on the use of evenly tritium-labeled peptides, allows the determination of peptide concentrations and the activity of enzymes involved in their degradation on a μg scale of biological samples both in vitro and in vivo.  相似文献   

11.
Binding of triethyltin to the cat hemoglobins (HbA and HbB) results in the “masking” of two of the freely reactive sulfhydryl groups (SH) within the hemoglobin tetramer. That the “masked” SH groups occur in position 13α of each α-subunit was demonstrated by the lack of labeling of cysteine 13α with [14C]N-ethylmaleimide when triethyltin is present. Studies with cat-human hybrid hemoglobins indicate that the α-subunit of the cat hemoglobins alone is involved in the formation of a complex with triethyltin. Using available data on the primary as well as three dimensional structures of animal hemoglobins, it is suggested the cysteine 13α and histidine 20α serve as axial ligands in the formation of a pentacoordinate triethyltin cat hemoglobin complex. The binding of triethyltin results in an increase in the oxygen affinity of the two cat hemoglobins.  相似文献   

12.
We summarize here information on the theoretical and experimental study of high-temperature (150-200 degrees C) solid phase catalytic isotope exchange (HTSPCIE) carried out with amino acids, peptides, and proteins under the action of spillover hydrogen. Main specific features of the HTSPCIE reaction, its mechanism, and its use for studying spatial interactions in polypeptides are discussed. A virtually complete absence of racemization makes this reaction a valuable preparative method. The main regularities of the HTSPCIE reaction with the participation of spillover tritium have been revealed in the case of peptides and proteins, and the dependence of reactivity of peptide fragments on the spatial organization of their molecules has been studied. An important peculiarity of this reaction is that HTSPCIE proceeds at 150-200 degrees C with a high degree of chirality retention in amino acids and peptides. This is provided by its reaction mechanism, which consists in a synchronous one-center substitution at the saturated carbon atom characterized by the formation of pentacoordinated carbon and a three-center bond between the carbon and the incoming and outgoing hydrogen atoms.  相似文献   

13.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

14.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F2 alpha by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F2 alpha by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

15.
The orientation of amino groups in the membrane in the α- and β-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of α-subunit, β-subunit and proteolytic fragments of α-subunit. Both the α- and the β-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the β-subunit are located on the extracellular surface. In the α-subunit, 65–80% of modified groups are localized to the cytoplasmic surface and 20–35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the α-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the α-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the β-subunit being on the extracellular surface, while the α-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

16.
2-Keto-3-deoxygluconate-6P aldolase ofPseudomonas putida mediates exchange between hydrogen isotope at the methylene carbon of 2-ketobutyrate and water. This occurs with aK m of 20 mM, 100 times the corresponding value for pyruvate, and a Vmax approximating 1/710 that of KDPG cleavage. Ketobutyrate is competitive with both pyruvate and 2-keto-3-deoxygluconate-6P for the enzyme. In addition, there is no evidence for C-C synthesis between ketobutyrate andd-glyceraldehyde-3P. A comparison of relativeV/K values for hydrogen exchange shows pyruvate to be 17,600 times better as a substrate than ketobutyrate. The detritiation of [3-3H]ketobutyrate is stereochemically random. In addition, the reaction proceeds with ak H/k T isotope effect of 15.3, consistent with C-H bond turnover being rate-determining. The E-ketobutyrate complex is reductively trapped, inactivating the enzyme. Reductive inactivation kinetics of E-ketobutyrate compared to E-pyruvate suggests more of the complex may be partitioned to ketimine in the ketobutyrate case than in the pyruvate case. A mechanism is considered in which ketobutyrate is bound as a ketimine in an orientation such that the active site acid/basic group cannot mediate catalytic ketimine/eneamine interconversion. Thus, exchange would result from hydrogen ionization at C-3′ of the ketimine, a slow spontaneous step compared to overall complex turnover. This noncatalyzed deprotonation would explain dissymmetry in exchange, the poorV/K compared to pyruvate, and a large tritium isotope effect.  相似文献   

17.
The Hydrogen–tritium exchange character of poly-D ,L -alanine was studied in detail as a model for the hydrogen exchange behavior of the unhindered, polymeric peptide group. The random chain nature of poly-D ,L -alanine was evident in the uniformity of exchange rate of all its hydrogens and in the similarity between this rate and that of random chain poly-D ,L -lysine and other known, unhindered secondary amide groups. An equilibrium isotope effect favoring the binding of tritium over protium to the extent of 21% was measured. Specific acid and base catalysis of the exchange and the absence of detectable general catalysis were demonstrated. Apparent energy of activation is 17 kcal/mole for deprotonation, largely due to dependence of Kw on temperature, and 15 kcal/mole for protonation, which correlates with the extreme apparent pK. The hydrogen –tritium exchange half-time rate; of poly-D ,L -alamine at any pH and temperature (T: °C) is given by the equation:   相似文献   

18.
Mycobacterium tuberculosis possesses a proteasome system that is required for the microbe to resist elimination by the host immune system. Despite the importance of the proteasome in the pathogenesis of tuberculosis, the molecular mechanisms by which proteasome activity is controlled remain largely unknown. Here, we demonstrate that the α-subunit (PrcA) of the M. tuberculosis proteasome is phosphorylated by the PknB kinase at three threonine residues (T84, T202, and T178) in a sequential manner. Furthermore, the proteasome with phosphorylated PrcA enhances the degradation of Ino1, a known proteasomal substrate, suggesting that PknB regulates the proteolytic activity of the proteasome. Previous studies showed that depletion of the proteasome and the proteasome-associated proteins decreases resistance to reactive nitrogen intermediates (RNIs) but increases resistance to hydrogen peroxide (H2O2). Here we show that PknA phosphorylation of unprocessed proteasome β-subunit (pre-PrcB) and α-subunit reduces the assembly of the proteasome complex and thereby enhances the mycobacterial resistance to H2O2 and that H2O2 stress diminishes the formation of the proteasome complex in a PknA-dependent manner. These findings indicate that phosphorylation of the M. tuberculosis proteasome not only modulates proteolytic activity of the proteasome, but also affects the proteasome complex formation contributing to the survival of M. tuberculosis under oxidative stress conditions.  相似文献   

19.
Glutathionyl hemoglobin, an example of post-translationally modified hemoglobin, has been studied as a marker of oxidative stress in various diseased conditions. Compared to normal hemoglobin, glutathionyl hemoglobin has been found to have increased oxygen affinity and reduced cooperativity. However, detailed information concerning the structural perturbation of hemoglobin associated with glutathionylation is lacking. In the present study, we report structural changes associated with glutathionylation of deoxyhemoglobin by hydrogen/deuterium (H/D) exchange coupled to matrix assisted laser desorption ionization (MALDI) mass spectrometry. We analyzed isotope exchange kinetics of backbone amide hydrogen of eleven peptic peptides in the deoxy state of both hemoglobin and glutathionyl hemoglobin molecules. Analysis of the deuterium incorporation kinetics for both molecules showed structural changes associated with the following peptides: α34-46, α1-29, β32-41, β86-102, β115-129, and β130-146. H/D exchange experiments suggest that glutathionylation of hemoglobin results in a change in conformation located at the above-mentioned regions of the hemoglobin molecule. MALDI mass spectrometry based H/D exchange experiment might be a simple way of monitoring structural changes associated with post-translational modification of protein.  相似文献   

20.
Protein hydrogen exchange is generally believed to register some aspects of internal protein dynamics, but the kind of motion at work is not clear. Experiments are being done to identify the determinants of protein hydrogen exchange and to distinguish between local unfolding and accessibility-penetration mechanisms. Results with small molecules, polynucleotides, and proteins demonstrate that solvent accessibility is by no means sufficient for fast exchange. H-exchange slowing is quite generally connected with intramolecular H-bonding, and the exchange process depends pivotally on transient H-bond cleavage. At least in alpha-helical structures, the cooperative aspect of H-bond cleavage must be expressed in local unfolding reactions. Results obtained by use of a difference hydrogen exchange method appear to provide a direct measurement of transient, cooperative, local unfolding reactions in hemoglobin. The reality of these supposed coherent breathing units is being tested by using the difference H-exchange approach to tritium label the units one at a time and then attempting to locate the tritium by fragmenting the protein, separating the fragments, and testing them for label. Early results demonstrate the feasibility of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号