首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work established that binding of the 11-5.2 anti-I-A(k) mAb, which recognizes the Ia.2 epitope on I-A(k) class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-A(k) mAbs that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-A(k) molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2-bearing subset of I-A(k) class II molecules is critically necessary for effective B cell-T cell interactions, especially at low Ag doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-A(k) class II molecules possessing a β-chain-tethered hen egg lysosome peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2(-) tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous Ag to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II conformer vital to the initiation of MHC class II-restricted B cell-T cell interactions.  相似文献   

2.
The neonatal injection of semiallogeneic F1 spleen cells into newborn parental mice results in the induction of tolerance to the corresponding alloantigen (alloAg) and chimerism. In these F1 cell-injected mice, we have previously observed that this state of specific tolerance is associated with the development of a transient lupus-like autoimmune syndrome. In this study, we show that neonatal injection of mice with spleen cells differing from the host at major histocompatibility complex (MHC) class I, class II, class (I + II), or minor lymphocyte stimulating (Mls) alloAg induced a state of specific tolerance characterized by the absence of alloreactive CTL and/or Th cell responses in the spleen and the thymus of 6- to 12-week-old injected mice. However, in mice rendered tolerant to MHC class II or class (I + II) alloAg, the presence of high levels of IgG1 antibodies, of circulating immune complexes, of anti-ssDNA autoantibodies, and of tissue lesions were transiently observed. In these mice, an increased Ia Ag expression on lymphoid spleen cells was also detected at 1 wk. The elevated production of IgG1 and the overexpression of Ia Ag were almost completely prevented by treatment with an anti-IL-4 mAb. Such manifestations of B cell activation and autoimmunity were not observed in mice neonatally injected with F1 cells differing from the host only at MHC class I Ag. In mice neonatally tolerized to Mls Ag, a transient increase in IgG2a production and an overexpression of Ia Ag were detected without features of autoimmunity, and were prevented by anti-INF-gamma mAb treatment. In mice rendered tolerant to MHC class II, class (I + II), or Mls alloAg at birth, the manifestations of B cell activation were associated with the presence of in vivo-activated alloreactive CD4+ T cells in the spleen--but not the thymus--of 1-wk-old injected mice. Together, these results suggest that in mice neonatally injected with semiallogeneic F1 cells, the process of tolerance induction is not efficient during the early postnatal period, and could allow the maturation and peripheralization of some alloreactive CD4+ T cells, leading to transient B cell activation and, depending on the alloAg, to autoimmunity.  相似文献   

3.
IFN-gamma is an immunomodulatory agent which is known to induce or enhance the expression of class II histocompatibility Ag (Ia Ag) on many lymphoid cells and cell lines of diverse origin. However, we have observed that IFN-gamma did not induce the expression of Ia Ag on Ia- human T cell lines. Neither did IFN-gamma enhance the expression of Ia Ag on Ia+ T cells. However, IFN-gamma was able to enhance the expression of class I histocompatibility Ag (HLA-A,B,C Ag) on a number of the T cell lines tested. Experiments with 125I-labeled IFN-gamma showed a relatively small degree of specific binding to these T cell lines. More extensive studies on two of the T cell lines demonstrated 1000 and 2600 IFN-gamma binding receptor sites/cell and binding affinities of 4.0 X 10(-10) M and 7.3 X 10(-10) M. Thus, although IFN-gamma can bind to human T cell lines and enhance class I histocompatibility Ag on these cells, IFN-gamma alone does not appear to regulate expression of class II histocompatibility Ag on T cell lines.  相似文献   

4.
5.
To identify prostate cancer-associated Ags, tumor-reactive T lymphocytes were generated using iterative stimulations of PBMC from a prostate cancer patient with an autologous IFN-gamma-treated carcinoma cell line in the presence of IL-2. A CD8+ T cell line and TCR alphabeta+ T cell clone were isolated that secreted IFN-gamma and TNF-alpha in response to autologous prostate cancer cells but not to autologous fibroblasts or lymphoblastoid cells. However, these T cells recognized several normal and malignant prostate epithelial cell lines without evidence of shared classical HLA molecules. The T cell line and clone also recognized colon cancers, but not melanomas, sarcomas, or lymphomas, suggesting recognition of a shared epithelium-associated Ag presented by nonclassical MHC or MHC-like molecules. Although Ag recognition by T cells was inhibited by mAb against CD8 and the TCR complex (anti-TCR alphabeta, CD3, Vbeta12), it was not inhibited by mAb directed against MHC class Ia or MHC class II molecules. Neither target expression of CD1 molecules nor HLA-G correlated with T cell recognition, but beta2-microglobulin expression was essential. Ag expression was diminished by brefeldin A, lactacystin, and cycloheximide, but not by chloroquine, consistent with an endogenous/cytosolic Ag processed through the classical class I pathway. These results suggest that prostate cancer and colon cancer cells can process and present a shared peptidic Ag to TCR alphabeta+ T cells via a nonclassical MHC I-like molecule yet to be defined.  相似文献   

6.
Initiation of an immune response depends upon expression of class II MHC determinants on plasma membranes of APC. Murine peritoneal macrophages treated with either rIFN-gamma or rIL-4 display significantly more class II MHC determinants than untreated control cells. Analysis of the induction of macrophage Ia Ag by these cytokines showed considerable quantitative and qualitative differences. Maximal levels of Ia Ag induced in macrophages and detected by ELISA after IL-4 treatment at 48 h was about 80% of that induced by IFN-gamma. However, the frequency of Ia+ cells in replicate macrophage populations cultured for 48 h in excess concentrations of cytokine was 60 to 80% with IFN-gamma, 30 to 40% with IL-4, and 5% with medium alone. Thus, the subpopulation of macrophages able to respond to IL-4 for induction of Ia Ag expression was less than that able to respond to IFN-gamma. Expression of Ia Ag on macrophages continuously exposed to IFN-gamma was maximal at 48 h and remained at this high level through 6 days. Maximal Ia Ag expression for IL-4-treated cells was also detected at 48 h, but was not sustained with time in culture, and returned to base line by 4 days. A similar time course for levels of Ia-specific message in macrophages at various times after IFN-gamma and IL-4 treatment was detected by Northern dot blot analysis. Loss of Ia mRNA and Ag with time in culture in the IL-4 treated cells was not due to macrophage cell death, depletion of active cytokine, or presence of fluid-phase inhibitors. IL-4 unresponsive cells were fully capable of maximal response to IFN-gamma for Ia Ag induction. These findings suggest that IL-4 and IFN-gamma induce class II MHC determinants through different mechanisms which may provide discrete regulatory control of APC function.  相似文献   

7.
The induction of class I and class II MHC-restricted CTL in response to different forms of A/JAP/57 influenza virus was compared. Splenocytes removed from influenza-immune BALB/c mice and stimulated in vitro with infected syngeneic splenocytes are mainly CD8+ (Lyt-2+) and specifically lyse infected Ia- and Ia+ target cells. To a lesser extent they also lyse non-infectious virus-pulsed Ia+ but not Ia- target cells. In contrast, syngeneic stimulators pulsed with non-infectious virus (exogenous Ag) induce effector T cells that specifically lyse both infected and non-infectious virus-pulsed Ia+ target cells. The cells present in this heterogeneous culture predominantly express the CD4 (L3T4) cell surface marker. Frequency analysis by limiting dilution of splenocytes derived directly from influenza-immune mice revealed a similar pattern of precursor induction: In vitro stimulation with infected splenocytes yielded primarily class I MHC-restricted CTL, whereas stimulation with non-infectious virus reciprocally induced primarily class II MHC-restricted CTL. Thus, the Ag form and consequently the intracellular route of viral Ag presentation profoundly influence the MHC restriction of CTL precursors induced.  相似文献   

8.
9.
To dissect the role of Ag presentation through MHC class I and/or II pathways by dendritic cell (DC)-tumor fusion cells, we have created various types of DC-tumor fusion cells by alternating fusion cell partners. Fusions of MC38/MUC1 carcinoma cells with DC from wild-type (WT-DC), MHC class I knockout (IKO-DC), class II knockout (IIKO-DC), or class I and II knockout (I/IIKO-DC) mice created WTDC-fusion cells (FC), IKO-FC, IIKO-FC, and I/IIKO-FC, respectively. MHC class II- and MUC1-positive fusion cells were constructed by fusion of B16/MUC1 melanoma cells with IKO-DC (IKO/B16-FC). Immunization of MUC1 transgenic mice with 5 x 10(5) WTDC-FC, IKO-FC, IIKO-FC, or I/IIKO-FC provided 100, 91.7, 61.5, and 15.4% protection, respectively, against tumor challenge with MC38/MUC1 cells. In contrast, all mice immunized with irradiated MC38/MUC1 tumor cells or WT-DC developed tumors. One group of mice was immunized with 5 x 10(5) IKO/B16-FC and then challenged with B16/Ia(+)/MUC1 on one flank and MC38/MUC1 on the other flank. Immunization of these mice with IKO/B16-FC resulted in 100 and 78.6% protection against B16/Ia(+)/MUC1 and MC38/MUC1 tumor challenge, respectively. The antitumor immunity induced by immunization with IKO/B16-FC was able to inhibit the growth of MHC class II-negative tumor. In addition, in vivo results correlated with the induction of Ag-specific CTL. Collectively, the data indicate that MHC class II Ag presentation targeting activation of CD4 T cells is indispensable for antitumor immunity.  相似文献   

10.
The effector mechanism of skin allograft rejection has been characterized as Ag specific, rejecting cells that express the target alloantigen but sparing those that do not. However, the rejection of MHC class II disparate skin grafts, in which very few cells (Langerhans cells) actually express the target Ia Ag could conceivably proceed by either one of two distinct rejection mechanisms. One possibility is that Ia- cells are destroyed by a sequence of events in which CD4+ T cells, activated by Ia+ LC, elaborate soluble factors that are either directly cytolytic or that recruit and activate non-specific effector cells. The alternative possibility is that activated CD4+ T cells elaborate soluble factors which induce Ia expression on Ia- cell populations, and that these Ia+ cells are subsequently destroyed by effector cells specific for the induced Ia alloantigens. We found that rejection of Ia+ LC was not of itself sufficient to cause rejection of skin grafts, indicating that skin allograft rejection is contingent on the destruction not only of LC but of other graft cell populations as well. We then investigated whether CD4+ T cells rejected allogeneic skin grafts in an antigen specific fashion. To do so, we engrafted immunoincompetent H-2b nude mice with trunk skin grafts from B6----A/J allophenic mice because such skin is composed of mutually exclusive cell populations expressing either H-2a or H-2b histocompatibility Ag, but not both. The engrafted mice were subsequently reconstituted with H-2b CD4+ T cells. The CD4+ T cells destroyed keratinocytes of A/J origin but spared keratinocytes of B6 origin, even though neither cell population constitutively expresses target IAk alloantigen. The targeted rejection of A/J keratinocytes but not of B6 keratinocytes indicates that the target Ia alloantigen must have been induced on Ia- A/J keratinocytes, rendering them susceptible to destruction by anti-Iak-specific CD4+ effector cells. These data demonstrate that CD4+ T cell rejection of skin allografts is mediated by Ag-specific CD4+ cytolytic T cells and hence, requires the induction of target Ia alloantigens on epidermal cells within the graft.  相似文献   

11.
In addition to their role as peptide binding proteins, MHC class II proteins can also function as signal transducing molecules. Recent work using B cells expressing genetically engineered truncated MHC class II molecules has suggested that signaling through the cytoplasmic domains of these proteins plays an important role in the generation of signals required for the activation of some T cell hybrids. Treatment of truncated Ia-expressing B cells with cAMP-elevating agents corrects the deficiency in Ag presentation by these cells. We report that the MHC class II-mediated signal appears to act by a mechanism that increases the efficiency of Ag presentation by B cells thereby lowering the amount of specific Ag required for T cell activation. We further show that the induction of the cAMP-induced signal in B cells is inhibited by cycloheximide and cytochalasin A, implicating protein synthesis as well as cytoskeletal rearrangements in Ag presentation to accessory signal- dependent hybrids. In contrast, these agents do not block Ag presentation to a T cell hybrid previously shown not to require the cAMP-induced signal for activation. The signal-dependent T hybrid is additionally dependent on LFA-1-ICAM-1 interaction for activation, whereas the signal-independent hybrid is not. These observations suggest the existence of two types of T cell hybrid with respect to their requirements for activation: those that require only the recognition of MHC class II-peptide complexes without accessory signals, as shown by their ability to respond to purified Ia on planar membranes, and those that, in addition to recognition of MHC II/Ag, require LFA-1-ICAM-1 interaction and the delivery of additional signal(s) induced in the B cell via signal transduction through MHC class II molecules.  相似文献   

12.
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.  相似文献   

13.
The ability of thyroid follicular epithelial cells (TFEC) to act as APC is linked to the expression of class II (Ia) molecules of the MHC. The cloned murine thyroid-derived epithelial cell line M.5 was used to demonstrate the potential effects of virus in the direct induction of Ia molecules on TFEC. Membrane binding and replication of reovirus type 1 in TFEC was demonstrated using fluorescein-labeled antireovirus antibody and fluorescence microscopy. One consequence of the interaction between reovirus and M.5 cells was the induction of Ia Ag and augmented class I molecule expression in M.5 cells. The levels of Ia expression at three days after reovirus binding were amplified 17.3-fold over controls and were 2-fold less than that seen upon treatment of M.5 cells with IFN-gamma. Supernatant transfer experiments showed that the induction of Ia expression was directly linked to the binding of virus to M.5 cells, and was not dependent upon virus replication or the presence of IFN. These results indicate that early events of reovirus binding or receptor internalization on TFEC initiate a signaling process which results in the induction of class II and augmentation of class I MHC protein levels on the cell surface.  相似文献   

14.
Class II major histocompatibility complex (MHC) gene expression has been studied in an Abelson virus-transformed pre-B cell line R8, and its Ia-negative variant R8205. These variant cells contained barely detectable levels of RNA specific for all class II genes, including the nonpolymorphic invariant chain gene (Ii), and did not express cell surface Ia. Fusion of this murine Ia-negative cell line to the human Ia-positive Raji cell produced an interspecies hybridoma that expressed the murine Ia. These data are further evidence for the existence of trans-acting factors that can regulate class II gene expression. Furthermore, the T cell-derived lymphokine B cell stimulatory factor 1 (BSF-1) induced expression of class II genes in the R8205 cells. Exposure of R8205 cells to an antibody that has been shown to mimic BSF-1 activity on normal B cells also resulted in expression of class II genes. These data demonstrate that three distinct signals--a lymphokine, an alloantibody binding to membrane structures, and an interspecies trans-acting factor--can induce expression of class II genes.  相似文献   

15.
The biochemical processing of and Ag presentation by MHC class II molecules were examined in B cell lines derived from pairs of identical twins discordant for type 1 diabetes. MHC class II defects detected exclusively in cells derived from the twins with autoimmunity included increased rates of transport to and subsequent turnover at the cell surface, inadequate glycosylation, and a reduced display at the cell surface of antigenic peptides. These defects appeared to be secondary to a decreased abundance of the p35 isoform of the invariant chain (Ii), a human-specific chaperone protein for MHC class II normally generated by use of an alternative translation start site. Stable transfection of diabetic B cell lines with an Ii p35 expression vector corrected the defects in MHC class II processing and peptide presentation. A defect in the expression of Ii p35 may thus result in impairment of Ag presentation by MHC class II molecules and thereby contribute to the development of type 1 diabetes in at-risk genotypes.  相似文献   

16.
17.
Quantitative variation in the expression of MHC-encoded class II (Ia) glycoproteins has been associated with stages of lymphocyte development and a number of disease conditions. We have used an avian MHC dosage model to study the regulation of Ia expression and the effects of quantitative variation in membrane Ia on B-cell development. Lymphocyte membrane expression of Ia glycoprotein molecules and the frequency of small-versus-large lymphocytes were examined in trisomic line chickens containing either two (disomic), three (trisomic), or four (tetrasomic) copies of the microchromosome encoding the MHC. This was accomplished by quantitative laser flow cytometry analysis of bursa-resident B lymphocytes from neonatal trisomic line chickens. The aneuploids (trisomics and tetrasomics) expressed more cell surface Ia than did normal disomic birds. Furthermore, the aneuploids exhibited a greater frequency of small B lymphocytes as compared to disomic chickens. Dual parameter analysis of Ia. quantity and cell size was undertaken to study B lymphocyte subpopulations in these birds. It was observed that the aneuploids had altered frequencies of two distinct subpopulations of cells: (1) an increased percentage of small cells which express high levels of Ia antigen and (2) a decreased percentage of large cells which express medium levels of Ia antigen. These findings support the view that MHC class II genes are regulated and expressed in a dosage-dependent manner. Therefore, increases in the number of MHC copies per cell result in the increased expression of Ia glycoprotein on bursa-resident B cells. The stepwise increase in membrane Ia on trisomic and tetrasomic B cells is correlated, and perhaps casually linked, with progressive degrees of alteration of developing B cell subpopulations in the bursa of aneuploid chicks. These events may ultimately alter the humoral immunity of the aneuploid animals.  相似文献   

18.
Although the physiologic function of gangliosides is unknown, evidence suggests they play a role in the regulation of cell growth. The binding of ganglioside GM1 by recombinant B subunit of cholera toxin (rCT-B) inhibited mitogen-stimulated B cell proliferation without elevating intracellular cAMP. CT-B paradoxically enhanced the expression of MHC class II (Ia) molecules and minor lymphocyte-stimulating determinants without altering the expression of some other immunologically relevant B cell surface Ag. Increased expression of Ia was not detected until 4 h after stimulation, kinetics similar to those seen when B cells are stimulated with anti-Ig antibody or IL-4, suggesting that the enhancement was not the result of redistribution of existing cell surface markers but rather the result of a new metabolic event. Both the inhibitory and stimulatory effects of CT-B could be blocked by incubation of CT-B with ganglioside GM1. Furthermore, enhancement of the CT-B-mediated effect was seen when additional ganglioside GM1 was incorporated into the B cell membrane. rCT-B with a mutation that interfered with its binding to ganglioside GM1 did not enhance Ia expression. Taken together, these results indicate that the observed effects of CT-B were most likely mediated through the binding of cell surface ganglioside GM1. CT-B-mediated stimulation of Ia expression provides a potential explanation for the previously described ability of CT-B to act as an immunoadjuvant. These results suggest that the binding of ganglioside GM1 has multiple B cell growth-regulating effects.  相似文献   

19.
B cell-deficient nonobese diabetic (NOD) mice are protected from the development of spontaneous autoimmune diabetes, suggesting a requisite role for Ag presentation by B lymphocytes for the activation of a diabetogenic T cell repertoire. This study specifically examines the importance of B cell-mediated MHC class II Ag presentation as a regulator of peripheral T cell tolerance to islet beta cells. We describe the construction of NOD mice with an I-Ag7 deficiency confined to the B cell compartment. Analysis of these mice, termed NOD BCIID, revealed the presence of functionally competent non-B cell APCs (macrophages/dendritic cells) with normal I-Ag7 expression and capable of activating Ag-reactive T cells. In addition, the secondary lymphoid organs of these mice harbored phenotypically normal CD4+ and CD8+ T cell compartments. Interestingly, whereas control NOD mice harboring I-Ag7-sufficient B cells developed diabetes spontaneously, NOD BCIID mice were resistant to the development of autoimmune diabetes. Despite their diabetes resistance, histologic examination of pancreata from NOD BCIID mice revealed foci of noninvasive peri-insulitis that could be intentionally converted into a destructive process upon treatment with cyclophosphamide. We conclude that I-Ag7-mediated Ag presentation by B cells serves to overcome a checkpoint in T cell tolerance to islet beta cells after their initial targeting has occurred. Overall, this work indicates that the full expression of the autoimmune potential of anti-islet T cells in NOD mice is intimately regulated by B cell-mediated MHC class II Ag presentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号